Last updated: 2021-08-26
Checks: 4 3
Knit directory: MS_lesions/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish
or wflow_build
to ensure that the code is always run in an empty environment.
The following objects were defined in the global environment when these results were created:
Name | Class | Size |
---|---|---|
q | function | 1008 bytes |
The command set.seed(20210118)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
To ensure reproducibility of the results, delete the cache directory ms12_markers_cache
and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE
when running wflow_build()
or wflow_publish()
.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 96d385e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rprofile
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: ._MS_lesions.sublime-project
Ignored: ._heatmap_check.png
Ignored: ._metadata_checked_20210712 - subject_metadata.csv
Ignored: ._model_example_fix.png
Ignored: .log/
Ignored: MS_lesions.sublime-project
Ignored: MS_lesions.sublime-workspace
Ignored: analysis/.__site.yml
Ignored: analysis/fig_muscat_cache/
Ignored: analysis/ms02_doublet_id_cache/
Ignored: analysis/ms03_SampleQC_cache/
Ignored: analysis/ms04_conos_cache/
Ignored: analysis/ms05_splitting_cache/
Ignored: analysis/ms06_sccaf_cache/
Ignored: analysis/ms07_soup_cache/
Ignored: analysis/ms08_modules_cache/
Ignored: analysis/ms09_ancombc_cache/
Ignored: analysis/ms09_ancombc_clean_1e3_cache/
Ignored: analysis/ms09_ancombc_clean_2e3_cache/
Ignored: analysis/ms10_muscat_run01_cache/
Ignored: analysis/ms10_muscat_run02_cache/
Ignored: analysis/ms10_muscat_template_broad_cache/
Ignored: analysis/ms10_muscat_template_fine_cache/
Ignored: analysis/ms11_paga_cache/
Ignored: analysis/ms12_markers_cache/
Ignored: analysis/ms13_labelling_cache/
Ignored: analysis/ms14_lesions_cache/
Ignored: analysis/ms15_mofa_sample_gm_cache/
Ignored: analysis/ms15_mofa_sample_gm_superclean_cache/
Ignored: analysis/ms15_mofa_sample_wm_cache/
Ignored: analysis/ms15_mofa_sample_wm_superclean_cache/
Ignored: analysis/ms15_patients_cache/
Ignored: analysis/ms15_patients_gm_cache/
Ignored: analysis/ms15_patients_sample_level_cache/
Ignored: analysis/ms15_patients_w_ms_cache/
Ignored: analysis/supp06_sccaf_cache/
Ignored: analysis/supp07_superclean_check_cache/
Ignored: analysis/supp09_ancombc_cache/
Ignored: analysis/supp10_muscat_cache/
Ignored: analysis/supp10_muscat_ctrl_gm_vs_wm_cache/
Ignored: analysis/supp10_muscat_heatmaps_cache/
Ignored: analysis/supp10_muscat_olg_pc1_cache/
Ignored: analysis/supp10_muscat_olg_pc2_cache/
Ignored: analysis/supp10_muscat_olg_pc_cache/
Ignored: analysis/supp10_muscat_regression_cache/
Ignored: analysis/supp10_muscat_soup_cache/
Ignored: code/.recovery/
Ignored: code/muscat_plan.txt
Ignored: data/
Ignored: figures/
Ignored: output/
Ignored: tmp/
Untracked files:
Untracked: code/dev_check_pmi_distns_20210824.R
Untracked: code/dev_redo_gsea_20210806.R
Untracked: code/dev_sketch_pseudobulk_2021-08-19.R
Unstaged changes:
Modified: analysis/ms08_modules.Rmd
Modified: analysis/ms09_ancombc.Rmd
Modified: analysis/ms12_markers.Rmd
Modified: analysis/ms14_lesions.Rmd
Modified: analysis/supp10_muscat_regression.Rmd
Modified: code/dev_edger_on_mofa_20210804.R
Modified: code/ms08_modules.R
Modified: code/ms09_ancombc.R
Modified: code/ms12_markers.R
Modified: code/ms14_lesions.R
Modified: code/ms15_mofa.R
Modified: code/supp10_muscat.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ms12_markers.Rmd
) and HTML (docs/ms12_markers.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6f577cc | Macnair | 2021-08-24 | Tweak dotplot in ms12_markers |
html | 6f577cc | Macnair | 2021-08-24 | Tweak dotplot in ms12_markers |
Rmd | f60e5c1 | Macnair | 2021-08-03 | Add astrocyte layer genes to ms12_markers |
html | f60e5c1 | Macnair | 2021-08-03 | Add astrocyte layer genes to ms12_markers |
Rmd | c20e65d | Macnair | 2021-07-02 | Add UMAP annotated with fine celltypes to ms12_markers |
html | 0ec42e1 | Macnair | 2021-06-20 | Update GSEA analysis, heatmaps, lesion-specific |
html | be76f21 | Macnair | 2021-06-10 | Add Dheeraj’s genes to dotplots |
Rmd | 0ee7fc4 | Macnair | 2021-06-08 | Add Dheeraj’s genes to ms12_markers |
html | 0ee7fc4 | Macnair | 2021-06-08 | Add Dheeraj’s genes to ms12_markers |
Rmd | 1ea21aa | Macnair | 2021-06-03 | Updated marker analysis |
html | 1ea21aa | Macnair | 2021-06-03 | Updated marker analysis |
Rmd | 768da0e | Macnair | 2021-05-27 | Marker panel validation |
html | 768da0e | Macnair | 2021-05-27 | Marker panel validation |
Rmd | 58205c2 | Macnair | 2021-05-21 | Update with random effects and markers |
html | 58205c2 | Macnair | 2021-05-21 | Update with random effects and markers |
html | 9852840 | Macnair | 2021-05-12 | Adding docs to repo for first time - massive! |
source('code/ms00_utils.R')
source('code/ms03_SampleQC.R')
source('code/ms04_conos.R')
source('code/ms07_soup.R')
source('code/ms10_muscat_runs.R')
source('code/ms12_markers.R')
# base inputs
sce_f = 'data/sce_raw/ms_sce.rds'
labels_f = 'data/byhand_markers/validation_markers_2021-05-31.csv'
labelled_f = 'output/ms13_labelling/conos_labelled_2021-05-31.txt.gz'
meta_f = 'data/metadata/metadata_updated_20201127.txt'
# qc info
qc_dir = 'output/ms03_SampleQC'
qc_f = file.path(qc_dir, 'ms_qc_dt.txt')
# define hand-selected marker location
byhand_f = paste0("data/byhand_markers/",
"Copy of Copy of Marker_selection_for_validation_MS_snucseq_30102020",
" Ediinburgh.xlsx - final markers for Cartana panel.csv")
roche_f = paste0("data/byhand_markers/",
"Copy of Copy of Marker_selection_for_validation_MS_snucseq_30102020",
" Ediinburgh.xlsx - analysis_Roche_April2021.csv")
# umap embedding options
umap_many_f = 'output/ms04_conos/conos_umap_sub_2021-02-11.txt'
# define pseudobulk files
soup_dir = 'output/ms07_soup'
date_soup = '2021-06-01'
pb_fine_f = sprintf('%s/pb_sum_fine_%s.rds', soup_dir, date_soup)
prop_fine_f = sprintf('%s/pb_prop_fine_%s.rds', soup_dir, date_soup)
pb_broad_f = file.path(soup_dir, 'pb_sum_broad_2021-06-01.rds')
pb_soup_f = file.path(soup_dir, 'pb_soup_broad_maximum_2021-06-01.rds')
# set up directory
save_dir = 'output/ms12_markers'
date_tag = '2021-06-02'
if (!dir.exists(save_dir))
dir.create(save_dir)
medians_pat = sprintf('%s/median_counts_%s_%s.txt', save_dir, '%s', date_tag)
prop_exp_pat = sprintf('%s/prop_exp_%s_%s.txt', save_dir, '%s', date_tag)
n_exp_f = sprintf('%s/n_exp_%s.txt', save_dir, date_tag)
conf_dt_f = sprintf('%s/confusion_matrix_dt_%s.txt', save_dir, date_tag)
conos_chk_f = sprintf('%s/conos_chk_%s.txt', save_dir, date_tag)
# group some celltypes together
broad_list = list(
`OPCs / COPs` = 'OPCs / COPs',
Oligodendrocytes = 'Oligodendrocytes',
`Astrocytes`='Astrocytes',
`Microglia + Immune`=c('Microglia', 'Immune'),
`Excitatory neurons`='Excitatory neurons',
`Inhibitory neurons`='Inhibitory neurons',
`Endothelial + Pericytes`=c('Endothelial cells', 'Pericytes')
)
min_cells = 10
fgsea_cut = 0.1
muscat_ctrl_f = sprintf('%s/muscat_ctrl_markers_%s.txt', save_dir, '2021-07-27')
fgsea_ctrl_f = sprintf('%s/muscat_ctrl_gsea_%s.txt', save_dir, '2021-07-27')
muscat_all_f = sprintf('%s/muscat_markers_%s.txt', save_dir, '2021-07-27')
fgsea_all_f = sprintf('%s/muscat_gsea_%s.txt', save_dir, '2021-07-27')
# do pseudobulking
pb_fine = pb_fine_f %>% readRDS
props_fine = prop_fine_f %>% readRDS
# load soup stuff
pb_soup = pb_soup_f %>% readRDS
pb_broad = pb_broad_f %>% readRDS
contam_dt = .calc_contam_dt(pb_soup, pb_broad, min_cells)
rm(pb_soup, pb_broad)
biotypes_dt = .get_biotypes_dt(gtf_f)
labels_dt = load_names_dt(labels_f) %>%
.[, conos := NULL]
cols_dt = colData(pb_fine) %>% as.data.frame %>%
as.data.table(keep.rownames = 'sample_id') %>%
.[, .(sample_id, patient_id, lesion_type)]
conos_dt = load_labelled_dt(labelled_f, labels_f) %>%
merge(cols_dt, by = 'sample_id')
pb_qc_dt = calc_pb_qc_dt(qc_dir, qc_f)
# get genes from panel
byhand_ls = load_byhand_genes(byhand_f, labels_dt, pb_fine)
byhand_gs = map(byhand_ls, ~.x$symbol) %>% unlist %>% unique
# get genes from roche panel
roche_dt = load_roche_genes(roche_f, labels_dt, pb_fine)
roche_gs = roche_dt$symbol %>% unique
# get genes from Dheeraj's list
dheeraj_dt = load_dheeraj_dt(pb_fine)
micro_gs = load_micro_macro_markers()
final_cols = make_final_cols(labels_dt)
umap_dt = load_umap_many(umap_many_f, conos_dt)
n_exp_dt = calc_n_exp_dt(n_exp_f, sce_f, conos_dt, byhand_ls)
prop_exp_f = sprintf(prop_exp_pat, 'cartana')
prop_exp_dt = calc_prop_exp_dt(prop_exp_f, sce_f, conos_dt, byhand_ls)
seriate_obj = calc_heatmap_ordering(prop_exp_dt)
prop_exp_f = sprintf(prop_exp_pat, 'roche')
prop_exp_dt_roche = calc_prop_exp_dt(prop_exp_f, sce_f, conos_dt, list(roche_dt))
seriate_roche = calc_heatmap_ordering(prop_exp_dt_roche)
medians_f = sprintf(medians_pat, 'cartana')
medians_dt = calc_medians_dt(medians_f, sce_f, conos_dt, byhand_ls)
medians_f = sprintf(medians_pat, 'roche')
medians_dt_roche = calc_medians_dt(medians_f, sce_f, conos_dt, list(roche_dt))
set.seed(123)
conf_dt = test_random_forest(conf_dt_f, sce_f, conos_dt,
min_exp_per_cell = 10, n_per_conos = 1000, n_cores = 16)
set.seed(123)
conos_chk = calc_conos_on_panel(sce_f, conos_dt, byhand_gs, conos_chk_f)
# get muscat markers within healthy samples
muscat_ctrl = calc_muscat_on_clusters(pb_fine, labels_dt,
contam_dt, biotypes_dt, broad_list, muscat_ctrl_f, sel_lesions = c('WM', 'GM'),
min_cells = 10, n_cores = 8)
fgsea_ctrl = calc_fgsea_on_muscat(muscat_ctrl, labels_dt, fgsea_ctrl_f,
fgsea_cut = 0.1, n_cores = 8)
# get muscat markers within all samples
muscat_all = calc_muscat_on_clusters(pb_fine, labels_dt,
contam_dt, biotypes_dt, broad_list, muscat_all_f, sel_lesions = c('WM', 'GM'),
min_cells = 10, n_cores = 8)
fgsea_all = calc_fgsea_on_muscat(muscat_all, labels_dt, fgsea_all_f,
fgsea_cut = 0.1, n_cores = 8)
message('min_dist = 1, spread = 2')
min_dist = 1, spread = 2
(plot_umap_final_celltypes(umap_dt[ min_dist == 1 & spread == 2 ],
final_cols))
Version | Author | Date |
---|---|---|
0ec42e1 | Macnair | 2021-06-20 |
message('min_dist = 1, spread = 2')
min_dist = 1, spread = 2
(plot_umap_final_celltypes_broad(umap_dt[ min_dist == 1 & spread == 2 ]))
message('min_dist = 1, spread = 2')
min_dist = 1, spread = 2
umap_sub = umap_dt[ min_dist == 1 & spread == 2 ] %>%
.[ type_broad %in% c('Oligodendrocytes', 'OPCs / COPs') ]
(plot_umap_fine(umap_sub, final_cols, by_var = 'type_fine',
xlim = c(0.1, 0.6), ylim = c(0, 0.5)))
for (d in unique(umap_dt$min_dist)) {
for (s in unique(umap_dt$spread)) {
cat(sprintf('### min_dist = %.2f, spread = %d\n', d, s))
print(plot_umap_final_celltypes(umap_dt[ min_dist == d & spread == s ],
final_cols))
cat('\n\n')
}
}
(plot_dotplot(pb_fine, props_fine, byhand_ls$broad, labels_dt,
row_split = 'broad_class'))
remove_dt = list(
`OPCs / COPs` = c("VCAN"),
Oligodendrocytes = c("GADD45B", "MOBP", "FSTL5"),
Astrocytes = c("ALDH1L1", "LRAT", "WIF1", "LINC00499"),
Microglia = c("CD74", "APOE"),
`Excitatory neurons` = c("ST18", "SV2B"),
`Inhibitory neurons` = c("CUX2", "GAD2", "EYA4"),
`Endothelial cells` = c("VWF"),
Immune = c("IGH4", "CD96")
) %>% imap( ~ data.table( broad_class = .y, symbol = .x, remove = TRUE )) %>%
rbindlist
dheeraj_tweak = merge(dheeraj_dt, remove_dt, by = c('broad_class', 'symbol'),
all.x = TRUE) %>%
.[ is.na(remove), remove := FALSE ] %>%
.[ remove == FALSE ] %>%
.[, broad_class := factor(broad_class, levels = broad_ord) %>%
fct_collapse(Endo = c("Endothelial cells", "Pericytes")) %>%
fct_recode(
OPCs = 'OPCs / COPs', Oligos = "Oligodendrocytes",
Micro = 'Microglia', Astros = 'Astrocytes',
`Inhib. neurons` = 'Inhibitory neurons', Imm = 'Immune'
)] %>%
.[, symbol := factor(symbol, levels = unique(dheeraj_dt$symbol) )] %>%
unique %>%
.[ order(broad_class, symbol) ] %>%
.[, symbol := as.character(symbol)]
labels_tweak = copy(labels_dt) %>%
.[, type_broad := fct_collapse(type_broad,
Endo = c("Endothelial cells", "Pericytes")) %>%
fct_recode(
OPCs = 'OPCs / COPs', Oligos = "Oligodendrocytes",
Micro = 'Microglia', Astros = 'Astrocytes',
`Inhib. neurons` = 'Inhibitory neurons', Imm = 'Immune'
) ]
(plot_dotplot(pb_fine, props_fine, dheeraj_tweak, labels_tweak,
row_split = 'broad_class'))
(plot_dotplot(pb_fine, props_fine, dheeraj_dt, labels_dt,
row_split = 'broad_class'))
for (b in names(broad_list)) {
cat('### ', b, '\n')
byhand_dt = rbind(
byhand_ls$broad[broad_class %in% broad_list[[b]],
.(fine_class = broad_class, symbol)],
byhand_ls$fine[broad_class %in% broad_list[[b]],
.(fine_class, symbol)]
) %>%
.[, fine_class := fine_class %>% fct_drop %>% fct_relevel(broad_list[[b]])]
suppressWarnings(print(plot_dotplot(pb_fine, props_fine, byhand_dt, labels_dt,
row_split = 'fine_class')))
cat('\n\n')
}
for (m in c('WM', 'GM')) {
cat('### ', m, '\n')
print(plot_pb_qc(pb_qc_dt[ matter == m ], min_cells = min_cells))
cat('\n\n')
}
muscat
results (all samples, broad)for (b in names(broad_list)) {
cat('### ', b, '\n')
print(plot_dotplot_muscat(muscat_all, labels_dt, broad_list[[b]],
fdr_cut = 0.05))
cat('\n\n')
}
muscat
results (healthy samples, broad)for (b in names(broad_list)) {
cat('### ', b, '\n')
print(plot_dotplot_muscat(muscat_ctrl, labels_dt, broad_list[[b]],
fdr_cut = 0.05))
cat('\n\n')
}
for (b in names(broad_list)) {
cat('### ', b, '\n')
print(plot_dotplot_gsea(fgsea_all, labels_dt, broad_list[[b]],
fgsea_cut = fgsea_cut))
cat('\n\n')
}
for (b in names(broad_list)) {
cat('### ', b, '\n')
print(plot_dotplot_gsea(fgsea_ctrl, labels_dt, broad_list[[b]],
fgsea_cut = fgsea_cut))
cat('\n\n')
}
suppressWarnings(print(plot_dotplot(pb_fine, props_fine, micro_gs, labels_dt,
row_split = 'micro_class')))
The dots show the median expressing cell, i.e. 50% of the cells of a given type express this many genes or less. So for example, 50% of the Immune cells in our snRNAseq dataset express at most 4 of the panel genes.
for (what_level in c('type_broad', 'type_fine')) {
cat('### ', what_level, '\n')
suppressWarnings(print(plot_binary_distributions(n_exp_dt, what_level, dot_cut = 0.5)))
cat('\n\n')
}
what_list = c(
'Propn. of cells expressing (scaled)',
'Propn. of cells expressing',
'Median counts per cell'
) %>% setNames(c('mean_scaled', 'mean_exp', 'median_exp'))
for (what in names(what_list)) {
cat('### ', what_list[[what]], '\n')
if (what == 'median_exp') {
suppressWarnings(print(plot_marker_heatmap(medians_dt, labels_dt,
seriate_obj, what)))
} else {
suppressWarnings(print(plot_marker_heatmap(prop_exp_dt, labels_dt,
seriate_obj, what)))
}
cat('\n\n')
}
for (what in names(what_list)) {
cat('### ', what_list[[what]], '\n')
if (what == 'median_exp') {
suppressWarnings(print(plot_marker_heatmap(medians_dt_roche, labels_dt,
seriate_roche, what)))
} else {
suppressWarnings(print(plot_marker_heatmap(prop_exp_dt_roche, labels_dt,
seriate_roche, what)))
}
cat('\n\n')
}
I took 1k cells per celltype, and trained a classifier using binary gene expression (i.e. we just see a 0 or a 1 for each panel gene in each cell). Then I tested this on another 1k cells per celltype. This gives an idea of how easy it is to identify these celltypes with our panel.
The three heatmaps show:
for (what in c('prob', 'logp', 'diff')) {
cat('### ', what, '\n')
suppressWarnings(draw(plot_classifier_heatmap(conf_dt, labels_dt, what)))
cat('\n\n')
}
draw(plot_conos_check(conos_dt, conos_chk))
for (what in c('type_broad', 'type_fine', 'conos_panel')) {
cat('### ', what, '\n')
print(plot_conos_umap(conos_chk, conos_dt, what))
cat('\n\n')
}
for (b in broad_ord) {
cat('### ', b, '\n')
print(plot_conos_density(conos_chk, conos_dt, b))
cat('\n\n')
}
devtools::session_info()
- Session info ---------------------------------------------------------------
setting value
version R version 4.0.3 (2020-10-10)
os CentOS Linux 7 (Core)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype C
tz Europe/Zurich
date 2021-07-28
- Packages -------------------------------------------------------------------
! package * version date lib
abind 1.4-5 2016-07-21 [2]
annotate 1.68.0 2020-10-27 [1]
AnnotationDbi 1.52.0 2020-10-27 [1]
assertthat * 0.2.1 2019-03-21 [2]
backports 1.2.1 2020-12-09 [2]
beachmat 2.6.4 2020-12-20 [1]
beeswarm 0.4.0 2021-06-01 [1]
Biobase * 2.50.0 2020-10-27 [1]
BiocGenerics * 0.36.1 2021-04-16 [1]
BiocManager 1.30.16 2021-06-15 [1]
BiocNeighbors 1.8.2 2020-12-07 [1]
BiocParallel * 1.24.1 2020-11-06 [1]
BiocSingular 1.6.0 2020-10-27 [1]
BiocStyle * 2.18.1 2020-11-24 [1]
Biostrings 2.58.0 2020-10-27 [1]
bit 4.0.4 2020-08-04 [2]
bit64 4.0.5 2020-08-30 [2]
bitops 1.0-7 2021-04-24 [2]
blme 1.0-5 2021-01-05 [1]
blob 1.2.1 2020-01-20 [2]
bluster 1.0.0 2020-10-27 [1]
boot 1.3-28 2021-05-03 [2]
brew 1.0-6 2011-04-13 [1]
broom 0.7.7 2021-06-13 [2]
bslib 0.2.5.1 2021-05-18 [2]
cachem 1.0.5 2021-05-15 [1]
Cairo 1.5-12.2 2020-07-07 [2]
callr 3.7.0 2021-04-20 [2]
caTools 1.18.2 2021-03-28 [2]
cellranger 1.1.0 2016-07-27 [2]
circlize * 0.4.13 2021-06-09 [1]
cli 2.5.0 2021-04-26 [2]
clue 0.3-59 2021-04-16 [1]
cluster 2.1.2 2021-04-17 [2]
codetools 0.2-18 2020-11-04 [2]
colorout * 1.2-2 2021-04-15 [1]
colorRamps 2.3 2012-10-29 [1]
colorspace 2.0-1 2021-05-04 [2]
ComplexHeatmap * 2.6.2 2020-11-12 [1]
conos * 1.4.1 2021-05-15 [1]
cowplot 1.1.1 2020-12-30 [2]
crayon 1.4.1 2021-02-08 [2]
data.table * 1.14.0 2021-02-21 [2]
DBI 1.1.1 2021-01-15 [2]
dbplyr 2.1.1 2021-04-06 [2]
DelayedArray 0.16.3 2021-03-24 [1]
DelayedMatrixStats 1.12.3 2021-02-03 [1]
deldir 0.2-10 2021-02-16 [2]
dendsort 0.3.4 2021-04-20 [1]
desc 1.3.0 2021-03-05 [2]
DESeq2 1.30.1 2021-02-19 [1]
devtools 2.4.2 2021-06-07 [1]
digest 0.6.27 2020-10-24 [2]
doParallel 1.0.16 2020-10-16 [1]
dplyr * 1.0.7 2021-06-18 [2]
dqrng 0.3.0 2021-05-01 [2]
drat 0.2.0 2021-04-22 [1]
DropletUtils * 1.10.3 2021-02-02 [1]
edgeR * 3.32.1 2021-01-14 [1]
ellipsis 0.3.2 2021-04-29 [2]
evaluate 0.14 2019-05-28 [2]
fansi 0.5.0 2021-05-25 [2]
farver 2.1.0 2021-02-28 [2]
fastmap 1.1.0 2021-01-25 [2]
fastmatch 1.1-0 2017-01-28 [1]
fgsea * 1.16.0 2020-10-27 [1]
fitdistrplus 1.1-5 2021-05-28 [2]
forcats * 0.5.1 2021-01-27 [2]
foreach 1.5.1 2020-10-15 [2]
fs 1.5.0 2020-07-31 [2]
future 1.21.0 2020-12-10 [2]
future.apply 1.7.0 2021-01-04 [2]
genefilter 1.72.1 2021-01-21 [1]
geneplotter 1.68.0 2020-10-27 [1]
generics 0.1.0 2020-10-31 [2]
GenomeInfoDb * 1.26.7 2021-04-08 [1]
GenomeInfoDbData 1.2.4 2021-04-15 [1]
GenomicAlignments 1.26.0 2020-10-27 [1]
GenomicRanges * 1.42.0 2020-10-27 [1]
GetoptLong 1.0.5 2020-12-15 [1]
ggbeeswarm * 0.6.0 2017-08-07 [1]
ggplot.multistats * 1.0.0 2019-10-28 [1]
ggplot2 * 3.3.4 2021-06-16 [1]
ggrepel * 0.9.1 2021-01-15 [2]
ggridges 0.5.3 2021-01-08 [2]
git2r 0.28.0 2021-01-10 [1]
glmmTMB 1.0.2.1 2020-07-02 [1]
GlobalOptions 0.1.2 2020-06-10 [1]
globals 0.14.0 2020-11-22 [2]
glue 1.4.2 2020-08-27 [2]
goftest 1.2-2 2019-12-02 [2]
googlesheets * 0.3.0 2018-06-29 [1]
gplots 3.1.1 2020-11-28 [2]
gridExtra 2.3 2017-09-09 [2]
grr 0.9.5 2016-08-26 [1]
gtable 0.3.0 2019-03-25 [2]
gtools 3.9.2 2021-06-06 [2]
haven 2.4.1 2021-04-23 [2]
HDF5Array 1.18.1 2021-02-04 [1]
hdf5r * 1.3.3 2020-08-18 [2]
hexbin 1.28.2 2021-01-08 [2]
highr 0.9 2021-04-16 [2]
hms 1.1.0 2021-05-17 [2]
htmltools 0.5.1.1 2021-01-22 [2]
htmlwidgets 1.5.3 2020-12-10 [2]
httpuv 1.6.1 2021-05-07 [2]
httr 1.4.2 2020-07-20 [2]
ica 1.0-2 2018-05-24 [2]
igraph * 1.2.6 2020-10-06 [2]
insight 0.14.2 2021-06-22 [1]
IRanges * 2.24.1 2020-12-12 [1]
irlba 2.3.3 2019-02-05 [2]
iterators * 1.0.13 2020-10-15 [2]
itertools * 0.1-3 2014-03-12 [1]
janitor 2.1.0 2021-01-05 [1]
jquerylib 0.1.4 2021-04-26 [2]
jsonlite 1.7.2 2020-12-09 [2]
kernlab 0.9-29 2019-11-12 [1]
KernSmooth 2.23-20 2021-05-03 [2]
knitr 1.33 2021-04-24 [1]
labeling 0.4.2 2020-10-20 [2]
later 1.2.0 2021-04-23 [2]
lattice 0.20-44 2021-05-02 [2]
lazyeval 0.2.2 2019-03-15 [2]
R leiden 0.3.8 <NA> [2]
leidenAlg 0.1.1 2021-03-03 [1]
lifecycle 1.0.0 2021-02-15 [2]
limma * 3.46.0 2020-10-27 [1]
listenv 0.8.0 2019-12-05 [2]
lme4 1.1-27.1 2021-06-22 [1]
lmerTest 3.1-3 2020-10-23 [1]
lmtest 0.9-38 2020-09-09 [2]
locfit 1.5-9.4 2020-03-25 [1]
loomR * 0.2.0 2021-04-15 [1]
lubridate 1.7.10 2021-02-26 [2]
magrittr * 2.0.1 2020-11-17 [1]
MASS 7.3-54 2021-05-03 [2]
Matrix * 1.3-4 2021-06-01 [2]
Matrix.utils * 0.9.8 2020-02-26 [1]
MatrixGenerics * 1.2.1 2021-01-30 [1]
matrixStats * 0.59.0 2021-06-01 [1]
mclust 5.4.7 2020-11-20 [1]
memoise 2.0.0 2021-01-26 [1]
mgcv 1.8-36 2021-06-01 [1]
mime 0.10 2021-02-13 [2]
miniUI 0.1.1.1 2018-05-18 [2]
minqa 1.2.4 2014-10-09 [1]
mixtools 1.2.0 2020-02-07 [1]
modelr 0.1.8 2020-05-19 [2]
munsell 0.5.0 2018-06-12 [2]
muscat * 1.5.1 2021-04-15 [1]
mvnfast 0.2.7 2021-05-20 [1]
mvtnorm 1.1-2 2021-06-07 [1]
N2R 0.1.1 2020-12-14 [1]
nlme 3.1-152 2021-02-04 [2]
nloptr 1.2.2.2 2020-07-02 [1]
nnls * 1.4 2012-03-19 [1]
numDeriv 2016.8-1.1 2019-06-06 [2]
pagoda2 * 1.0.3 2021-05-03 [1]
parallelly 1.26.0 2021-06-09 [2]
patchwork * 1.1.1 2020-12-17 [2]
pbapply 1.4-3 2020-08-18 [2]
pbkrtest 0.5.1 2021-03-09 [1]
performance * 0.7.2 2021-05-17 [1]
pillar 1.6.1 2021-05-16 [2]
pkgbuild 1.2.0 2020-12-15 [1]
pkgconfig 2.0.3 2019-09-22 [2]
pkgload 1.2.1 2021-04-06 [2]
plotly 4.9.3 2021-01-10 [2]
plyr 1.8.6 2020-03-03 [2]
png 0.1-7 2013-12-03 [2]
polyclip 1.10-0 2019-03-14 [2]
prettyunits 1.1.1 2020-01-24 [2]
processx 3.5.2 2021-04-30 [2]
progress 1.2.2 2019-05-16 [2]
promises 1.2.0.1 2021-02-11 [2]
ps 1.6.0 2021-02-28 [2]
purrr * 0.3.4 2020-04-17 [2]
R.methodsS3 1.8.1 2020-08-26 [1]
R.oo 1.24.0 2020-08-26 [1]
R.utils 2.10.1 2020-08-26 [1]
R6 * 2.5.0 2020-10-28 [2]
ranger * 0.12.1 2020-01-10 [1]
RANN 2.6.1 2019-01-08 [2]
RColorBrewer * 1.1-2 2014-12-07 [2]
Rcpp 1.0.6 2021-01-15 [2]
RcppAnnoy 0.0.18 2020-12-15 [2]
RCurl 1.98-1.3 2021-03-16 [1]
readr * 1.4.0 2020-10-05 [2]
readxl * 1.3.1 2019-03-13 [2]
registry 0.5-1 2019-03-05 [1]
remotes 2.4.0 2021-06-02 [1]
reprex 2.0.0 2021-04-02 [2]
reshape2 * 1.4.4 2020-04-09 [2]
reticulate 1.20 2021-05-03 [2]
rhdf5 2.34.0 2020-10-27 [1]
rhdf5filters 1.2.1 2021-05-03 [1]
Rhdf5lib 1.12.1 2021-01-26 [1]
rjson 0.2.20 2018-06-08 [1]
rlang 0.4.11 2021-04-30 [2]
rmarkdown * 2.8 2021-05-07 [2]
RMTstat 0.3 2014-11-01 [1]
ROCR 1.0-11 2020-05-02 [2]
Rook 1.1-1 2014-10-20 [1]
rpart 4.1-15 2019-04-12 [2]
rprojroot 2.0.2 2020-11-15 [2]
Rsamtools 2.6.0 2020-10-27 [1]
RSQLite 2.2.7 2021-04-22 [1]
rstudioapi 0.13 2020-11-12 [2]
rsvd 1.0.5 2021-04-16 [1]
rtracklayer * 1.50.0 2020-10-27 [1]
Rtsne 0.15 2018-11-10 [2]
rvest 1.0.0 2021-03-09 [2]
S4Vectors * 0.28.1 2020-12-09 [1]
SampleQC * 0.4.5 2021-04-15 [1]
sass 0.4.0 2021-05-12 [2]
scales * 1.1.1 2020-05-11 [2]
scater * 1.18.6 2021-02-26 [1]
scattermore 0.7 2020-11-24 [2]
sccore 0.1.3 2021-05-05 [1]
scran * 1.18.7 2021-04-16 [1]
sctransform 0.3.2 2020-12-16 [2]
scuttle 1.0.4 2020-12-17 [1]
segmented 1.3-4 2021-04-22 [1]
seriation * 1.2-9 2020-10-01 [1]
sessioninfo 1.1.1 2018-11-05 [1]
Seurat * 4.0.1 2021-03-18 [2]
SeuratObject * 4.0.1 2021-05-08 [2]
shape 1.4.6 2021-05-19 [1]
shiny 1.6.0 2021-01-25 [2]
SingleCellExperiment * 1.12.0 2020-10-27 [1]
snakecase 0.11.0 2019-05-25 [1]
sparseMatrixStats 1.2.1 2021-02-02 [1]
spatstat.core 2.1-2 2021-04-18 [2]
spatstat.data 2.1-0 2021-03-21 [2]
spatstat.geom 2.1-0 2021-04-15 [2]
spatstat.sparse 2.0-0 2021-03-16 [2]
spatstat.utils 2.2-0 2021-06-14 [2]
statmod 1.4.36 2021-05-10 [1]
stringi 1.6.2 2021-05-17 [2]
stringr * 1.4.0 2019-02-10 [2]
SummarizedExperiment * 1.20.0 2020-10-27 [1]
survival 3.2-11 2021-04-26 [2]
tensor 1.5 2012-05-05 [2]
testthat 3.0.3 2021-06-16 [2]
tibble * 3.1.2 2021-05-16 [2]
tictoc * 1.0.1 2021-04-19 [1]
tidyr * 1.1.3 2021-03-03 [2]
tidyselect 1.1.1 2021-04-30 [2]
tidyverse * 1.3.1 2021-04-15 [2]
TMB 1.7.20 2021-04-08 [1]
triebeard 0.3.0 2016-08-04 [2]
TSP 1.1-10 2020-04-17 [1]
UpSetR * 1.4.0 2019-05-22 [1]
urltools 1.7.3 2019-04-14 [2]
usethis 2.0.1 2021-02-10 [1]
utf8 1.2.1 2021-03-12 [2]
uwot * 0.1.10 2020-12-15 [2]
variancePartition 1.20.0 2020-10-27 [1]
vctrs 0.3.8 2021-04-29 [2]
vipor 0.4.5 2017-03-22 [1]
viridis * 0.6.1 2021-05-11 [1]
viridisLite * 0.4.0 2021-04-13 [1]
whisker 0.4 2019-08-28 [1]
withr 2.4.2 2021-04-18 [2]
workflowr * 1.6.2 2020-04-30 [1]
writexl * 1.4.0 2021-04-20 [1]
xfun 0.24 2021-06-15 [1]
XML 3.99-0.6 2021-03-16 [1]
xml2 1.3.2 2020-04-23 [2]
xtable 1.8-4 2019-04-21 [2]
XVector 0.30.0 2020-10-27 [1]
yaml 2.2.1 2020-02-01 [2]
zlibbioc 1.36.0 2020-10-27 [1]
zoo 1.8-9 2021-03-09 [2]
source
CRAN (R 4.0.0)
Bioconductor
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
Bioconductor
Bioconductor
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.2)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.1)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Github (jalvesaq/colorout@79931fd)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
Bioconductor
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
<NA>
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Github (mojaveazure/loomR@df0144b)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.1)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
Github (HelenaLC/muscat@c939663)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
Bioconductor
Github (wmacnair/SampleQC@5e3f021)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.1)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.1)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
[1] /pstore/home/macnairw/lib/conda_r3.12
[2] /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/R/library
R -- Package was removed from disk.
top_muscat = muscat_all[ logFC > 0 ] %>%
.[, fdr_rank := frank(FDR, ties.method = 'random'), by = type_fine ] %>%
.[ fdr_rank <= 2 ] %>%
.[ order(type_broad, type_fine, fdr_rank) ] %>%
.[, .(broad_class = type_broad, symbol) ]
(plot_dotplot(pb_fine, props_fine, top_muscat, labels_dt,
row_split = 'broad_class'))
top_muscat = muscat_ctrl[ logFC > 0 ] %>%
.[, fdr_rank := frank(FDR, ties.method = 'random'), by = type_fine ] %>%
.[ fdr_rank <= 2 ] %>%
.[ order(type_broad, type_fine, fdr_rank) ] %>%
.[, .(broad_class = type_broad, symbol) ]
(plot_dotplot(pb_fine, props_fine, top_muscat, labels_dt,
row_split = 'broad_class'))
oligo_gs = list(
oligos = c("MAG", "MOG", "CNP", "MYRF", "PLP1", "MBP"),
lipids = c("ELOVL2", "ELOVL4", "ELOVL5", "ELOVL7"),
myelin = c("CERS2", "CGT", "CST", "DAPAT", "PEX7")
)
oligos_dt = lapply(names(oligo_gs), function(n)
data.table(oligo_fn = n, symbol = oligo_gs[[n]]) ) %>% rbindlist %>%
.[, oligo_fn := factor(oligo_fn, levels = names(oligo_gs))]
olg_types = c("Oligo_A1", "Oligo_A2", "Oligo_B1", "Oligo_B2", "Oligo_B3", "Oligo_B4",
"Oligo_C1", "Oligo_C2", "Oligo_D")
pb_olgs = copy(pb_fine)
assays(pb_olgs) = assays(pb_olgs)[olg_types]
int_colData(pb_olgs)$n_cells =
lapply(int_colData(pb_olgs)$n_cells, function(l) l[olg_types])
props_olgs = copy(props_fine)
assays(props_olgs) = assays(props_olgs)[olg_types]
int_colData(props_olgs)$n_cells =
lapply(int_colData(props_olgs)$n_cells, function(l) l[olg_types])
(plot_dotplot(pb_olgs, props_olgs, oligos_dt, labels_dt,
row_split = 'oligo_fn'))
astro_gs = list(
pan_astro = c("ALDH1A1", "GFAP"),
upper = c("SCEL", "SPRY1", "DDHD1", "EOGT", "CHRDL1", "ADIPOR2"),
gm_bias = c("GRM3", "KIRREL2", "IGFBP2", "IRAK2", "TRPM3", "CHD9",
"INKA2", "SLC25A34", "AXIN2", "SLC7A5", "LIMD1", "CDO1", "AKT2", "LEF1",
"BSG", "APOE", "MFGE8", "ITM2C", "SLC27A1", "CYP4F2", "FJX1"),
deep = c("ID3", "ID1", "DKK3", "EFHD2", "LRP1B", "DHCR24",
"IL33", "PAQR6")
)
astros_dt = lapply(names(astro_gs), function(n)
data.table(astro_layer = n, symbol = astro_gs[[n]]) ) %>% rbindlist %>%
.[, astro_layer := factor(astro_layer, levels = names(astro_gs))]
# setdiff(astros_dt$symbol, rowData(pb_fine)$symbol)
ast_types = c("Astro_A", "Astro_B", "Astro_C", "Astro_D", "Astro_E")
pb_asts = copy(pb_fine)
assays(pb_asts) = assays(pb_asts)[ast_types]
int_colData(pb_asts)$n_cells =
lapply(int_colData(pb_asts)$n_cells, function(l) l[ast_types])
props_asts = copy(props_fine)
assays(props_asts) = assays(props_asts)[ast_types]
int_colData(props_asts)$n_cells =
lapply(int_colData(props_asts)$n_cells, function(l) l[ast_types])
(plot_dotplot(pb_asts, props_asts, astros_dt, labels_dt,
row_split = 'astro_layer'))
Version | Author | Date |
---|---|---|
f60e5c1 | Macnair | 2021-08-03 |
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/libopenblasp-r0.3.12.so
locale:
[1] LC_CTYPE=C LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] ggbeeswarm_0.6.0 pagoda2_1.0.3
[3] ranger_0.12.1 rmarkdown_2.8
[5] ggrepel_0.9.1 writexl_1.4.0
[7] readxl_1.3.1 fgsea_1.16.0
[9] tictoc_1.0.1 performance_0.7.2
[11] reshape2_1.4.4 Matrix.utils_0.9.8
[13] UpSetR_1.4.0 dplyr_1.0.7
[15] purrr_0.3.4 readr_1.4.0
[17] tidyr_1.1.3 tibble_3.1.2
[19] tidyverse_1.3.1 rtracklayer_1.50.0
[21] nnls_1.4 muscat_1.5.1
[23] DropletUtils_1.10.3 edgeR_3.32.1
[25] limma_3.46.0 googlesheets_0.3.0
[27] scran_1.18.7 uwot_0.1.10
[29] scater_1.18.6 BiocParallel_1.24.1
[31] ggplot.multistats_1.0.0 seriation_1.2-9
[33] ComplexHeatmap_2.6.2 SeuratObject_4.0.1
[35] Seurat_4.0.1 conos_1.4.1
[37] igraph_1.2.6 SampleQC_0.4.5
[39] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[41] Biobase_2.50.0 GenomicRanges_1.42.0
[43] GenomeInfoDb_1.26.7 IRanges_2.24.1
[45] S4Vectors_0.28.1 BiocGenerics_0.36.1
[47] MatrixGenerics_1.2.1 matrixStats_0.59.0
[49] Matrix_1.3-4 loomR_0.2.0
[51] itertools_0.1-3 iterators_1.0.13
[53] hdf5r_1.3.3 R6_2.5.0
[55] patchwork_1.1.1 forcats_0.5.1
[57] ggplot2_3.3.4 scales_1.1.1
[59] viridis_0.6.1 viridisLite_0.4.0
[61] assertthat_0.2.1 stringr_1.4.0
[63] data.table_1.14.0 magrittr_2.0.1
[65] circlize_0.4.13 RColorBrewer_1.1-2
[67] BiocStyle_2.18.1 colorout_1.2-2
[69] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] rsvd_1.0.5 ica_1.0-2
[3] ps_1.6.0 Rsamtools_2.6.0
[5] foreach_1.5.1 lmtest_0.9-38
[7] rprojroot_2.0.2 crayon_1.4.1
[9] spatstat.core_2.1-2 MASS_7.3-54
[11] rhdf5filters_1.2.1 nlme_3.1-152
[13] backports_1.2.1 reprex_2.0.0
[15] rlang_0.4.11 XVector_0.30.0
[17] ROCR_1.0-11 irlba_2.3.3
[19] callr_3.7.0 nloptr_1.2.2.2
[21] rjson_0.2.20 bit64_4.0.5
[23] glue_1.4.2 sctransform_0.3.2
[25] processx_3.5.2 pbkrtest_0.5.1
[27] vipor_0.4.5 spatstat.sparse_2.0-0
[29] AnnotationDbi_1.52.0 spatstat.geom_2.1-0
[31] haven_2.4.1 tidyselect_1.1.1
[33] usethis_2.0.1 fitdistrplus_1.1-5
[35] variancePartition_1.20.0 XML_3.99-0.6
[37] zoo_1.8-9 GenomicAlignments_1.26.0
[39] xtable_1.8-4 evaluate_0.14
[41] cli_2.5.0 scuttle_1.0.4
[43] zlibbioc_1.36.0 rstudioapi_0.13
[45] miniUI_0.1.1.1 whisker_0.4
[47] bslib_0.2.5.1 rpart_4.1-15
[49] fastmatch_1.1-0 shiny_1.6.0
[51] BiocSingular_1.6.0 xfun_0.24
[53] clue_0.3-59 pkgbuild_1.2.0
[55] cluster_2.1.2 caTools_1.18.2
[57] TSP_1.1-10 listenv_0.8.0
[59] Biostrings_2.58.0 png_0.1-7
[61] future_1.21.0 withr_2.4.2
[63] bitops_1.0-7 plyr_1.8.6
[65] cellranger_1.1.0 dqrng_0.3.0
[67] pillar_1.6.1 gplots_3.1.1
[69] GlobalOptions_0.1.2 cachem_1.0.5
[71] fs_1.5.0 kernlab_0.9-29
[73] GetoptLong_1.0.5 DelayedMatrixStats_1.12.3
[75] vctrs_0.3.8 ellipsis_0.3.2
[77] generics_0.1.0 devtools_2.4.2
[79] urltools_1.7.3 tools_4.0.3
[81] beeswarm_0.4.0 munsell_0.5.0
[83] DelayedArray_0.16.3 pkgload_1.2.1
[85] fastmap_1.1.0 compiler_4.0.3
[87] abind_1.4-5 httpuv_1.6.1
[89] segmented_1.3-4 sessioninfo_1.1.1
[91] plotly_4.9.3 GenomeInfoDbData_1.2.4
[93] gridExtra_2.3 glmmTMB_1.0.2.1
[95] lattice_0.20-44 deldir_0.2-10
[97] utf8_1.2.1 later_1.2.0
[99] jsonlite_1.7.2 dendsort_0.3.4
[101] pbapply_1.4-3 sparseMatrixStats_1.2.1
[103] genefilter_1.72.1 lazyeval_0.2.2
[105] promises_1.2.0.1 doParallel_1.0.16
[107] R.utils_2.10.1 goftest_1.2-2
[109] brew_1.0-6 spatstat.utils_2.2-0
[111] reticulate_1.20 cowplot_1.1.1
[113] blme_1.0-5 statmod_1.4.36
[115] Rtsne_0.15 Rook_1.1-1
[117] HDF5Array_1.18.1 survival_3.2-11
[119] numDeriv_2016.8-1.1 yaml_2.2.1
[121] htmltools_0.5.1.1 memoise_2.0.0
[123] locfit_1.5-9.4 digest_0.6.27
[125] mime_0.10 registry_0.5-1
[127] N2R_0.1.1 RSQLite_2.2.7
[129] future.apply_1.7.0 remotes_2.4.0
[131] blob_1.2.1 R.oo_1.24.0
[133] drat_0.2.0 mvnfast_0.2.7
[135] labeling_0.4.2 splines_4.0.3
[137] Rhdf5lib_1.12.1 Cairo_1.5-12.2
[139] mixtools_1.2.0 RCurl_1.98-1.3
[141] broom_0.7.7 hms_1.1.0
[143] modelr_0.1.8 rhdf5_2.34.0
[145] colorspace_2.0-1 BiocManager_1.30.16
[147] shape_1.4.6 sass_0.4.0
[149] Rcpp_1.0.6 mclust_5.4.7
[151] RANN_2.6.1 mvtnorm_1.1-2
[153] fansi_0.5.0 parallelly_1.26.0
[155] ggridges_0.5.3 lifecycle_1.0.0
[157] bluster_1.0.0 minqa_1.2.4
[159] testthat_3.0.3 leiden_0.3.8
[161] jquerylib_0.1.4 snakecase_0.11.0
[163] desc_1.3.0 RcppAnnoy_0.0.18
[165] TMB_1.7.20 htmlwidgets_1.5.3
[167] triebeard_0.3.0 RMTstat_0.3
[169] beachmat_2.6.4 polyclip_1.10-0
[171] rvest_1.0.0 mgcv_1.8-36
[173] globals_0.14.0 insight_0.14.2
[175] leidenAlg_0.1.1 lubridate_1.7.10
[177] codetools_0.2-18 gtools_3.9.2
[179] prettyunits_1.1.1 dbplyr_2.1.1
[181] R.methodsS3_1.8.1 gtable_0.3.0
[183] DBI_1.1.1 git2r_0.28.0
[185] tensor_1.5 httr_1.4.2
[187] highr_0.9 KernSmooth_2.23-20
[189] stringi_1.6.2 progress_1.2.2
[191] farver_2.1.0 annotate_1.68.0
[193] hexbin_1.28.2 xml2_1.3.2
[195] colorRamps_2.3 sccore_0.1.3
[197] boot_1.3-28 grr_0.9.5
[199] BiocNeighbors_1.8.2 lme4_1.1-27.1
[201] geneplotter_1.68.0 scattermore_0.7
[203] DESeq2_1.30.1 bit_4.0.4
[205] spatstat.data_2.1-0 janitor_2.1.0
[207] pkgconfig_2.0.3 lmerTest_3.1-3
[209] knitr_1.33