Last updated: 2021-11-18
Checks: 5 2
Knit directory: MS_lesions/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish
or wflow_build
to ensure that the code is always run in an empty environment.
The following objects were defined in the global environment when these results were created:
Name | Class | Size |
---|---|---|
q | function | 1008 bytes |
The command set.seed(20210118)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version eddbf0d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rprofile
Ignored: .Rproj.user/
Ignored: ._MS_lesions.sublime-project
Ignored: .log/
Ignored: MS_lesions.sublime-project
Ignored: MS_lesions.sublime-workspace
Ignored: analysis/.__site.yml
Ignored: analysis/fig_muscat_cache/
Ignored: analysis/ms02_doublet_id_cache/
Ignored: analysis/ms03_SampleQC_cache/
Ignored: analysis/ms04_conos_cache/
Ignored: analysis/ms05_splitting_cache/
Ignored: analysis/ms06_sccaf_cache/
Ignored: analysis/ms07_soup_cache/
Ignored: analysis/ms08_modules_cache/
Ignored: analysis/ms08_modules_pseudobulk_cache/
Ignored: analysis/ms09_ancombc_cache/
Ignored: analysis/ms09_ancombc_clean_1e3_cache/
Ignored: analysis/ms09_ancombc_clean_2e3_cache/
Ignored: analysis/ms10_muscat_run01_cache/
Ignored: analysis/ms10_muscat_run02_cache/
Ignored: analysis/ms10_muscat_template_broad_cache/
Ignored: analysis/ms10_muscat_template_fine_cache/
Ignored: analysis/ms11_paga_cache/
Ignored: analysis/ms12_markers_cache/
Ignored: analysis/ms13_labelling_cache/
Ignored: analysis/ms14_lesions_cache/
Ignored: analysis/ms15_mofa_sample_gm_cache/
Ignored: analysis/ms15_mofa_sample_gm_final_meta_cache/
Ignored: analysis/ms15_mofa_sample_gm_superclean_cache/
Ignored: analysis/ms15_mofa_sample_gm_w_layers_final_meta_cache/
Ignored: analysis/ms15_mofa_sample_wm_cache/
Ignored: analysis/ms15_mofa_sample_wm_final_meta_cache/
Ignored: analysis/ms15_mofa_sample_wm_new_meta_cache/
Ignored: analysis/ms15_mofa_sample_wm_superclean_cache/
Ignored: analysis/ms15_patients_cache/
Ignored: analysis/ms15_patients_gm_cache/
Ignored: analysis/ms15_patients_sample_level_cache/
Ignored: analysis/ms15_patients_w_ms_cache/
Ignored: analysis/supp06_sccaf_cache/
Ignored: analysis/supp07_superclean_check_cache/
Ignored: analysis/supp09_ancombc_cache/
Ignored: analysis/supp09_ancombc_mixed_cache/
Ignored: analysis/supp09_ancombc_superclean_cache/
Ignored: analysis/supp10_muscat_cache/
Ignored: analysis/supp10_muscat_ctrl_gm_vs_wm_cache/
Ignored: analysis/supp10_muscat_gm_layers_effects_cache/
Ignored: analysis/supp10_muscat_heatmaps_cache/
Ignored: analysis/supp10_muscat_olg_pc1_cache/
Ignored: analysis/supp10_muscat_olg_pc2_cache/
Ignored: analysis/supp10_muscat_olg_pc_cache/
Ignored: analysis/supp10_muscat_regression_cache/
Ignored: analysis/supp10_muscat_soup_cache/
Ignored: analysis/supp10_muscat_soup_mito_cache/
Ignored: code/._ms10_muscat_fns_recover.R
Ignored: code/.recovery/
Ignored: code/jobs/._muscat_run09_2021-10-11.slurm
Ignored: code/muscat_plan.txt
Ignored: data/
Ignored: figures/
Ignored: output/
Ignored: tmp/
Untracked files:
Untracked: Rplots.pdf
Untracked: analysis/ms15_mofa_sample_gm_w_layers_final_meta.Rmd
Untracked: analysis/supp09_ancombc_superclean.Rmd
Untracked: analysis/supp10_muscat_gm_layers_effects.Rmd
Untracked: code/jobs/muscat_run24_2021-11-16.slurm
Unstaged changes:
Modified: analysis/ms09_ancombc_mixed.Rmd
Modified: analysis/ms14_lesions.Rmd
Modified: analysis/ms15_mofa_sample_wm_superclean.Rmd
Modified: analysis/supp07_superclean_check.Rmd
Modified: code/dev_edger_on_mofa_20210804.R
Modified: code/ms09_ancombc_mixed.R
Modified: code/ms10_muscat_fns.R
Modified: code/ms10_muscat_runs.R
Modified: code/ms10_slurm_jobs.py
Modified: code/ms14_lesions.R
Modified: code/ms15_mofa.R
Modified: code/supp10_muscat.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ms09_ancombc_mixed.Rmd
) and HTML (docs/ms09_ancombc_mixed.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | afe32c6 | Macnair | 2021-11-16 | Final version of ANCOM-BC analysis |
html | afe32c6 | Macnair | 2021-11-16 | Final version of ANCOM-BC analysis |
Rmd | 8d1ece6 | Macnair | 2021-10-28 | Update ms09_ancombc_mixed with paired analysis |
html | 8d1ece6 | Macnair | 2021-10-28 | Update ms09_ancombc_mixed with paired analysis |
Rmd | a73a2fa | Macnair | 2021-10-23 | Update ANCOM bootstrapping analysis |
html | a73a2fa | Macnair | 2021-10-23 | Update ANCOM bootstrapping analysis |
source('code/ms00_utils.R')
source('code/ms04_conos.R')
source('code/ms07_soup.R')
source('code/ms09_ancombc_mixed.R')
# define run
labels_f = 'data/byhand_markers/validation_markers_2021-05-31.csv'
labelled_f = 'output/ms13_labelling/conos_labelled_2021-05-31.txt.gz'
meta_f = "data/metadata/metadata_checked_assumptions_2021-10-08.xlsx"
# define pseudobulk data
soup_dir = 'output/ms07_soup'
pb_broad_f = file.path(soup_dir, 'pb_sum_broad_2021-10-11.rds')
pb_fine_f = file.path(soup_dir, 'pb_sum_fine_2021-10-11.rds')
pb_f_ls = c(broad = pb_broad_f, fine = pb_fine_f)
# where to save?
save_dir = 'output/ms09_ancombc'
date_tag = '2021-11-12'
if (!dir.exists(save_dir))
dir.create(save_dir)
# sample variables
sample_vars = c('sample_id', 'matter', 'lesion_type',
'neuro_ok', 'neuro_prop', 'sample_source', 'subject_id',
'sex', 'age_scale', 'pmi_cat', 'pmi_cat2')
# identifying strange samples
neuro_mad_cut = 2
log_n_mad_cut = 3
# define how to select PCs
cut_var_exp = 0.01
cut_layer_cor = 0.2
# define WM data
wm_spec = list(
name = 'lesions_WM',
subset = list(matter = 'WM', neuro_ok = TRUE),
size = list(min_count = 10, min_prop = 0.1),
exc_regex = '^(Ex_|Inh_|Neuro_oligo)',
formula = '~ lesion_type + sex + age_scale + pmi_cat',
fixef_test = 'lesion_type',
fixef_covar = c('sex', 'age_scale', 'pmi_cat'),
ranef_var = 'subject_id'
)
gm_spec = list(
name = 'lesions_GM',
subset = list(matter = 'GM', neuro_ok = TRUE),
size = list(min_count = 10, min_prop = 0.1),
exc_regex = NULL,
formula = '~ lesion_type + sex + age_scale + pmi_cat2',
fixef_test = 'lesion_type',
fixef_covar = c('sex', 'age_scale', 'pmi_cat2'),
ranef_var = 'subject_id'
)
# define multiple different ways to do subspaces
gm_pc_spec = list(
name_str = 'lesions_GM_',
subset = list(matter = 'GM', neuro_ok = TRUE),
size = list(min_count = 10, min_prop = 0.1),
exc_regex = NULL,
formula_pat = '~ lesion_type + %s + sex + age_scale + pmi_cat2',
fixef_test = 'lesion_type',
fixef_covar = c('sex', 'age_scale', 'pmi_cat2'),
ranef_var = 'subject_id',
broad_sel = c("Excitatory neurons", "Inhibitory neurons"),
lesion_ctrl = "GM",
n_pcs = NA
)
# define multiple different ways to do subspaces
nagm_pc_spec = list(
name_str = 'lesions_NAGM_',
subset = list(matter = 'GM', neuro_ok = TRUE),
size = list(min_count = 10, min_prop = 0.1),
exc_regex = NULL,
formula_pat = '~ lesion_type + %s + sex + age_scale + pmi_cat2',
fixef_test = 'lesion_type',
fixef_covar = c('sex', 'age_scale', 'pmi_cat2'),
ranef_var = 'subject_id',
broad_sel = c("Excitatory neurons", "Inhibitory neurons"),
lesion_ctrl = "GM",
n_pcs = NA
)
# gather things
spec_list = list(wm_spec, gm_spec)
names(spec_list) = sapply(spec_list, function(l) l$name)
# bootstrapping parameters
n_boots = 2e4
n_cores = 24
# define files for saving outputs
lrt_pat = file.path(save_dir, 'abundance_nb_lrt_model_%s_%s.rds')
clr_pat = file.path(save_dir, 'clr_clustering_%s_%s.txt')
ancom_pat = file.path(save_dir, 'ancombc_standard_%s_%s.rds')
boots_pat = file.path(save_dir, 'ancombc_bootstrap_%s_%s.txt.gz')
# define files for saving outputs
pb_pcs_ls = c(
broad = sprintf('%s/pb_gm_w_pcs_sum_broad_%s.rds', soup_dir, date_tag),
fine = sprintf('%s/pb_gm_w_pcs_sum_fine_%s.rds', soup_dir, date_tag)
)
meta_dt = load_meta_dt_from_xls(meta_f)
labels_dt = load_names_dt(labels_f) %>%
.[, cluster_id := type_fine]
conos_dt = load_labelled_dt(labelled_f, labels_f) %>%
merge(meta_dt, by = 'sample_id') %>%
add_neuro_props(mad_cut = neuro_mad_cut)
# check for any outliers
size_chks = calc_size_outliers(conos_dt, mad_cut = log_n_mad_cut)
message("these samples excluded to outlier sample sizes:")
these samples excluded to outlier sample sizes:
print(size_chks[ size_ok == FALSE ])
matter sample_id N med_log_N mad_log_N size_ok
1: GM EU034 911 8.519391 0.423111 FALSE
2: GM EU043 687 8.519391 0.423111 FALSE
# exclude them from conos
ok_samples = size_chks[ size_ok == TRUE]$sample_id
conos_dt = conos_dt[ (sample_id %in% ok_samples) & (neuro_ok == TRUE) ]
props_dt = calc_props_dt(conos_dt, sample_vars)
wide_dt = calc_counts_wide(props_dt, sample_vars)
# get neuronal proportions for all samples
props_neu = conos_dt %>%
.[ (type_broad %in% gm_pc_spec$broad_sel) ] %>%
calc_props_dt(sample_vars)
# calc PCAs
ctrl_pcs_dt = props_neu %>%
.[ lesion_type == gm_pc_spec$lesion_ctrl ] %>%
calc_ctrl_pcs_dt(layers_dt)
# apply pcs
all_pcs_dt = apply_ctrl_pcs(props_neu[ matter == "GM" ], ctrl_pcs_dt,
cut_var_exp, cut_layer_cor)
wide_neu = merge(all_pcs_dt, wide_dt, 'sample_id')
# negative-binomial model on unadjusted counts, WM
nb_wm_f = sprintf(lrt_pat, wm_spec$name, date_tag)
if (file.exists(nb_wm_f)) {
nb_wm_ls = readRDS(nb_wm_f)
} else {
nb_wm_ls = calc_celltype_mixed_models(wide_dt, sample_vars,
wm_spec$subset, wm_spec$size, wm_spec$exc_regex, wm_spec$inc_regex,
wm_spec$fixef_test, wm_spec$fixef_covar, wm_spec$ranef_var,
n_cores = n_cores, offset_var = NULL)
saveRDS(nb_wm_ls, file = nb_wm_f)
}
# negative-binomial model on unadjusted counts, GM
nb_gm_f = sprintf(lrt_pat, gm_spec$name, date_tag)
if (file.exists(nb_gm_f)) {
nb_gm_ls = readRDS(nb_gm_f)
} else {
nb_gm_ls = calc_celltype_mixed_models(wide_dt, sample_vars,
gm_spec$subset, gm_spec$size, gm_spec$exc_regex, gm_spec$inc_regex,
gm_spec$fixef_test, gm_spec$fixef_covar, gm_spec$ranef_var,
n_cores = n_cores, offset_var = NULL)
saveRDS(nb_gm_ls, file = nb_gm_f)
}
# make spec
pc_vars = str_subset(names(wide_neu), "ctrl_PC")
for (n_pcs in seq_along(pc_vars)) {
# which PCs?
layer_spec = make_layer_pc_spec(gm_pc_spec, pc_vars, n_pcs = n_pcs)
# negative-binomial model on unadjusted counts, GM, w layers
nb_layers_f = sprintf(lrt_pat, layer_spec$name, date_tag)
if (!file.exists(nb_layers_f)) {
nb_layers_ls = calc_celltype_mixed_models(wide_neu, c(sample_vars, pc_vars),
layer_spec$subset, layer_spec$size, layer_spec$exc_regex, layer_spec$inc_regex,
layer_spec$fixef_test, layer_spec$fixef_covar, layer_spec$ranef_var,
n_cores = n_cores, offset_var = NULL)
saveRDS(nb_layers_ls, file = nb_layers_f)
}
}
# load them
nb_pcs_ls = lapply(seq_along(pc_vars), function(n_pcs) {
# make file
layer_spec = make_layer_pc_spec(gm_pc_spec, pc_vars, n_pcs = n_pcs)
nb_gm_ls = sprintf(lrt_pat, layer_spec$name, date_tag) %>%
readRDS
return(nb_gm_ls)
}) %>% setNames(paste0(gm_pc_spec$name_str, seq_along(pc_vars), 'pcs'))
# make list of models
lrt_ls = list(WM = nb_wm_ls, GM = nb_gm_ls) %>%
c(nb_pcs_ls)
# loop through specified models
for (nn in names(spec_list)) {
# make file
ancom_f = sprintf(ancom_pat, spec_list[[nn]]$name, date_tag)
# if necessary, run thing
if (!file.exists(ancom_f)) {
message('running standard ANCOM-BC for ', nn)
# define things we need
spec = spec_list[[nn]]
# do standard ANCOM, save results
ancom_obj = calc_ancom_standard(wide_dt, sample_vars,
spec$subset, spec$size, spec$exc_regex, spec$inc_regex, spec$ref_type,
spec$fixef_test, spec$fixef_covar)
saveRDS(ancom_obj, file = ancom_f)
}
}
# loop through specified models
for (nn in names(spec_list)) {
# make file
boots_f = sprintf(boots_pat, spec_list[[nn]]$name, date_tag)
# if necessary, run thing
if (!file.exists(boots_f)) {
message('running bootstrapped ANCOM-BC for ', nn)
# define things we need
spec = spec_list[[nn]]
# do bootstrapping, save resulst
boots_dt = calc_ancom_bootstrap(wide_dt, sample_vars,
spec$subset, spec$size, spec$exc_regex, spec$inc_regex, spec$ref_type,
spec$fixef_test, spec$fixef_covar, spec$ranef_var,
seed = 1, n_boots, n_cores)
fwrite(boots_dt, file = boots_f)
}
}
# set up this run
for (n_pcs in seq_along(pc_vars)) {
# which PCs?
layer_spec = make_layer_pc_spec(gm_pc_spec, pc_vars, n_pcs = n_pcs)
# make file
ancom_f = sprintf(ancom_pat, layer_spec$name, date_tag)
# if necessary, run thing
if (file.exists(ancom_f)) {
message('standard ANCOM-BC for ', layer_spec$name, ' already done')
} else {
# do bootstrapping, save results
message('running standard ANCOM-BC for ', layer_spec$name)
ancom_neu = calc_ancom_standard(wide_neu, c(sample_vars, pc_vars),
layer_spec$subset, layer_spec$size, layer_spec$exc_regex,
layer_spec$inc_regex, layer_spec$ref_type,
layer_spec$fixef_test, layer_spec$fixef_covar)
saveRDS(ancom_neu, file = ancom_f)
}
# do bootstrapping
boots_f = sprintf(boots_pat, layer_spec$name, date_tag)
# if necessary, run thing
if (file.exists(boots_f)) {
message('bootstrapped ANCOM-BC for ', layer_spec$name, ' already done')
} else {
# do bootstrapping, save resulst
message('running bootstrapped ANCOM-BC for ', layer_spec$name)
t_start = Sys.time()
boots_neu = calc_ancom_bootstrap(wide_neu, c(sample_vars, pc_vars),
layer_spec$subset, layer_spec$size, layer_spec$exc_regex,
layer_spec$inc_regex, layer_spec$ref_type,
layer_spec$fixef_test, layer_spec$fixef_covar, layer_spec$ranef_var,
seed = 1, n_boots, n_cores)
t_stop = Sys.time()
fwrite(boots_neu, file = boots_f)
# report how long it took
t_elapsed = difftime(t_stop, t_start, units = 'mins') %>% unclass
message(sprintf(
paste0(' (bootstrapping %d boots with %d cores took %.1f minutes;',
' %.1f boots / min / core)'),
n_boots, n_cores, t_elapsed, n_boots / t_elapsed / n_cores))
}
}
standard ANCOM-BC for lesions_GM_1pcs already done
bootstrapped ANCOM-BC for lesions_GM_1pcs already done
standard ANCOM-BC for lesions_GM_2pcs already done
bootstrapped ANCOM-BC for lesions_GM_2pcs already done
standard ANCOM-BC for lesions_GM_3pcs already done
bootstrapped ANCOM-BC for lesions_GM_3pcs already done
standard ANCOM-BC for lesions_GM_4pcs already done
bootstrapped ANCOM-BC for lesions_GM_4pcs already done
standard ANCOM-BC for lesions_GM_5pcs already done
bootstrapped ANCOM-BC for lesions_GM_5pcs already done
standard ANCOM-BC for lesions_GM_6pcs already done
bootstrapped ANCOM-BC for lesions_GM_6pcs already done
standard ANCOM-BC for lesions_GM_7pcs already done
bootstrapped ANCOM-BC for lesions_GM_7pcs already done
# set up this run
nagm_pcs = 4
layer_spec = make_layer_pc_spec(nagm_pc_spec, pc_vars, n_pcs = nagm_pcs)
wide_nagm = wide_neu %>% copy %>%
.[, lesion_type := lesion_type %>% fct_relevel("NAGM") %>% fct_drop ]
# make file
ancom_f = sprintf(ancom_pat, layer_spec$name, date_tag)
# if necessary, run thing
source("code/ms09_ancombc_mixed.R")
if (file.exists(ancom_f)) {
message('standard ANCOM-BC for ', layer_spec$name, ' already done')
ancom_nagm = ancom_f %>% readRDS
} else {
# do bootstrapping, save results
message('running standard ANCOM-BC for ', layer_spec$name)
ancom_nagm = calc_ancom_standard(wide_nagm, c(sample_vars, pc_vars),
layer_spec$subset, layer_spec$size, layer_spec$exc_regex,
layer_spec$inc_regex, layer_spec$ref_type,
layer_spec$fixef_test, layer_spec$fixef_covar)
saveRDS(ancom_nagm, file = ancom_f)
}
standard ANCOM-BC for lesions_NAGM_4pcs already done
# do bootstrapping
boots_f = sprintf(boots_pat, layer_spec$name, date_tag)
# if necessary, run thing
if (file.exists(boots_f)) {
message('bootstrapped ANCOM-BC for ', layer_spec$name, ' already done')
boots_nagm = boots_f %>% fread
} else {
# do bootstrapping, save resulst
message('running bootstrapped ANCOM-BC for ', layer_spec$name)
t_start = Sys.time()
boots_nagm = calc_ancom_bootstrap(wide_nagm, c(sample_vars, pc_vars),
layer_spec$subset, layer_spec$size, layer_spec$exc_regex,
layer_spec$inc_regex, layer_spec$ref_type,
layer_spec$fixef_test, layer_spec$fixef_covar, layer_spec$ranef_var,
seed = 1, n_boots, n_cores)
t_stop = Sys.time()
fwrite(boots_nagm, file = boots_f)
# report how long it took
t_elapsed = difftime(t_stop, t_start, units = 'mins') %>% unclass
message(sprintf(
paste0(' (bootstrapping %d boots with %d cores took %.1f minutes;',
' %.1f boots / min / core)'),
n_boots, n_cores, t_elapsed, n_boots / t_elapsed / n_cores))
}
bootstrapped ANCOM-BC for lesions_NAGM_4pcs already done
ancom_ls = lapply(names(spec_list), function(nn) {
# make file
ancom_obj = sprintf(ancom_pat, spec_list[[nn]]$name, date_tag) %>%
readRDS
return(ancom_obj)
}) %>% setNames(names(spec_list))
boots_ls = lapply(names(spec_list), function(nn) {
# make file
boots_dt = sprintf(boots_pat, spec_list[[nn]]$name, date_tag) %>% fread
return(boots_dt)
}) %>% setNames(names(spec_list))
# load std
ancom_pcs_ls = lapply(seq_along(pc_vars), function(n_pcs) {
# make file
layer_spec = make_layer_pc_spec(gm_pc_spec, pc_vars, n_pcs = n_pcs)
ancom_obj = sprintf(ancom_pat, layer_spec$name, date_tag) %>%
readRDS
return(ancom_obj)
}) %>% setNames(paste0(gm_pc_spec$name_str, seq_along(pc_vars), 'pcs'))
# load boots
boots_pcs_ls = lapply(seq_along(pc_vars), function(n_pcs) {
# make file
layer_spec = make_layer_pc_spec(gm_pc_spec, pc_vars, n_pcs = n_pcs)
boots_dt = sprintf(boots_pat, layer_spec$name, date_tag) %>% fread
return(boots_dt)
}) %>% setNames(paste0(gm_pc_spec$name_str, seq_along(pc_vars), 'pcs'))
ancom_ls = c(ancom_ls, ancom_pcs_ls, list(lesions_NAGM_4pcs = ancom_nagm))
boots_ls = c(boots_ls, boots_pcs_ls, list(lesions_NAGM_4pcs = boots_nagm))
pcs_coefs_dt = calc_pcs_coefs_dt(pc_vars, boots_ls, labels_dt)
for (m in c('nbinom', 'poisson', 'beta')) {
cat('### ', m, '\n')
print(plot_wm_vs_gm(conos_dt, model = m))
cat('\n\n')
}
for (nn in names(lrt_ls)) {
cat('### ', nn, '\n')
print(plot_lrt_results(lrt_ls[[nn]]$anova_dt, labels_dt))
cat('\n\n')
}
# plot CLR heatmaps
cat("#### WM\n")
wm_types = setdiff(broad_ord, c('Excitatory neurons', 'Inhibitory neurons'))
props_wm = calc_props_dt(conos_dt[ type_broad %in% wm_types ], sample_vars) %>%
.[ matter == "WM" ]
hm_wm = plot_clr_heatmap(props_wm, cluster_rows = TRUE, n_clusters = 5, what = 'clr')
hm_wm = draw(hm_wm, row_dend_width = unit(0.5, "in"), merge_legend = TRUE)
cat('\n\n')
cat("#### GM\n")
gm_types = setdiff(broad_ord, c('Immune'))
props_gm = calc_props_dt(conos_dt[ type_broad %in% gm_types ], sample_vars) %>%
.[ matter == "GM" ]
hm_gm = plot_clr_heatmap(props_gm, cluster_rows = TRUE, n_clusters = 5, what = 'clr')
hm_gm = draw(hm_gm, row_dend_width = unit(0.5, "in"), merge_legend = TRUE)
cat('\n\n')
# save clusters
save_heatmap_clusters(hm_wm@ht_list[[1]], sprintf(clr_pat, "WM", date_tag))
save_heatmap_clusters(hm_gm@ht_list[[1]], sprintf(clr_pat, "GM", date_tag))
cat("#### WM\n")
wm_types = setdiff(broad_ord, c('Excitatory neurons', 'Inhibitory neurons'))
props_wm = calc_props_dt(conos_dt[ type_broad %in% wm_types ], sample_vars) %>%
.[ matter == "WM" ] # & neuro_ok == TRUE]
draw(plot_clr_heatmap(props_wm, cluster_rows = FALSE, what = 'log_p'),
row_dend_width = unit(0.5, "in"), merge_legend = TRUE)
cat('\n\n')
cat("#### GM\n")
gm_types = setdiff(broad_ord, c('Immune'))
props_gm = calc_props_dt(conos_dt[ type_broad %in% gm_types ], sample_vars) %>%
.[ matter == "GM" ] # & neuro_ok == TRUE]
draw(plot_clr_heatmap(props_gm, cluster_rows = FALSE, what = 'log_p'),
row_dend_width = unit(0.5, "in"), merge_legend = TRUE)
cat('\n\n')
cat("#### WM\n")
wm_types = c('Oligodendrocytes', 'OPCs / COPs')
props_wm = calc_props_dt(conos_dt[ type_broad %in% wm_types ], sample_vars) %>%
.[ matter == "WM" ] # & neuro_ok == TRUE]
draw(plot_clr_heatmap(props_wm, cluster_rows = FALSE, what = 'log_p'),
row_dend_width = unit(1, "in"), merge_legend = TRUE)
cat('\n\n')
cat("#### GM\n")
gm_types = c('Oligodendrocytes', 'OPCs / COPs')
props_gm = calc_props_dt(conos_dt[ type_broad %in% gm_types ], sample_vars) %>%
.[ matter == "GM" ] # & neuro_ok == TRUE]
draw(plot_clr_heatmap(props_gm, cluster_rows = FALSE, what = 'log_p'),
row_dend_width = unit(1, "in"), merge_legend = TRUE)
cat('\n\n')
gm_types = c('Excitatory neurons', 'Inhibitory neurons')
props_gm = calc_props_dt(conos_dt[ type_broad %in% gm_types ], sample_vars) %>%
.[ matter == "GM" ] %>%
merge(wide_neu[, .(sample_id, ctrl_PC01, ctrl_PC02, ctrl_PC03, ctrl_PC04)],
by = 'sample_id')
draw(plot_clr_heatmap(props_gm, cluster_rows = FALSE, what = 'clr'),
row_dend_width = unit(1, "in"), merge_legend = TRUE)
Version | Author | Date |
---|---|---|
afe32c6 | Macnair | 2021-11-16 |
(plot_propns_layers(props_dt[ matter == "GM" & str_detect(type_broad, 'neuron') ]))
Warning: Transformation introduced infinite values in continuous y-axis
Version | Author | Date |
---|---|---|
afe32c6 | Macnair | 2021-11-16 |
(plot_pca_results(wide_neu, ctrl_pcs_dt, pc_vars, what = "proj"))
Version | Author | Date |
---|---|---|
afe32c6 | Macnair | 2021-11-16 |
(plot_patients_over_pc(wide_neu, pc_vars))
Version | Author | Date |
---|---|---|
afe32c6 | Macnair | 2021-11-16 |
(plot_pca_loadings(ctrl_pcs_dt, cut_var_exp = cut_var_exp,
cut_layer_cor = cut_layer_cor))
Version | Author | Date |
---|---|---|
afe32c6 | Macnair | 2021-11-16 |
for (nn in names(ancom_ls)) {
cat('#### ', nn, '\n')
print(plot_ancombc_ci(ancom_ls[[nn]], q_cut = 0.05))
cat('\n\n')
}
for (nn in names(ancom_ls)) {
cat('#### ', nn, '\n')
print(plot_ancombc_ci(ancom_ls[[nn]],
coef_filter = "lesion_type", q_cut = 0.05))
cat('\n\n')
}
for (nn in names(boots_ls)) {
cat('#### ', nn, '\n')
print(plot_boots_dt(boots_ls[[nn]], min_effect = 0.2))
cat('\n\n')
}
for (nn in names(boots_ls)) {
cat('#### ', nn, '\n')
print(plot_boots_dt(boots_ls[[nn]],
coef_filter = "lesion_type", min_effect = 0.2))
cat('\n\n')
}
for (nn in names(boots_ls)) {
cat('#### ', nn, '\n')
print(plot_boots_vs_standard(boots_ls[[nn]], ancom_ls[[nn]], labels_dt,
q_cut = 0.05, min_effect = 0.2))
cat('\n\n')
}
for (sel_coef in unique(pcs_coefs_dt$coef)) {
cat('#### ', sel_coef, '\n')
print(plot_effect_of_pcs(sel_coef,
pcs_coefs_dt[ type_broad %in% gm_pc_spec$broad_sel ] ))
cat('\n\n')
}
for (sel_coef in unique(pcs_coefs_dt$coef)) {
cat('#### ', sel_coef, '\n')
print(plot_effect_of_pcs(sel_coef,
pcs_coefs_dt[ !(type_broad %in% gm_pc_spec$broad_sel) ]))
cat('\n\n')
}
sel_coefs = c("NAGM", "GML")
cat('#### ', 'neurons only', '\n')
g = plot_effect_of_pcs(sel_coefs,
pcs_coefs_dt[ type_broad %in% gm_pc_spec$broad_sel ] ) +
labs(title = "Neurons only")
print(g)
Version | Author | Date |
---|---|---|
afe32c6 | Macnair | 2021-11-16 |
cat('\n\n')
cat('#### ', 'other celltypes', '\n')
g = plot_effect_of_pcs(sel_coefs,
pcs_coefs_dt[ !(type_broad %in% gm_pc_spec$broad_sel) ] ) +
labs(title = "Non-neurons only")
print(g)
Version | Author | Date |
---|---|---|
afe32c6 | Macnair | 2021-11-16 |
cat('\n\n')
if ( !all(file.exists(pb_pcs_ls)) ) {
for (nn in names(pb_f_ls)) {
# which files?
pb_f = pb_f_ls[[ nn ]]
pb_pcs_f = pb_pcs_ls[[ nn ]]
# load full pseudobulk, restrict to just GM
pb_all = pb_f %>% readRDS
pb_pcs = pb_all[, all_pcs_dt$sample_id]
for (v in str_subset(names(all_pcs_dt), "ctrl_PC"))
colData(pb_pcs)[[v]] = all_pcs_dt[[v]] %>% scale %>% `/`(2)
# save
saveRDS(pb_pcs, file = pb_pcs_f)
}
}
devtools::session_info()
Registered S3 method overwritten by 'cli':
method from
print.boxx spatstat.geom
- Session info ---------------------------------------------------------------
setting value
version R version 4.0.5 (2021-03-31)
os CentOS Linux 7 (Core)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype C
tz Europe/Zurich
date 2021-11-18
- Packages -------------------------------------------------------------------
! package * version date lib
abind 1.4-5 2016-07-21 [2]
ade4 1.7-18 2021-09-16 [1]
ANCOMBC * 1.0.5 2021-03-09 [1]
annotate 1.68.0 2020-10-27 [1]
AnnotationDbi 1.52.0 2020-10-27 [1]
ape 5.5 2021-04-25 [1]
assertthat * 0.2.1 2019-03-21 [2]
backports 1.2.1 2020-12-09 [2]
beachmat 2.6.4 2020-12-20 [1]
beeswarm 0.4.0 2021-06-01 [1]
betareg 3.1-4 2021-02-09 [1]
Biobase * 2.50.0 2020-10-27 [1]
BiocGenerics * 0.36.1 2021-04-16 [1]
BiocManager 1.30.16 2021-06-15 [1]
BiocNeighbors 1.8.2 2020-12-07 [1]
BiocParallel * 1.24.1 2020-11-06 [1]
BiocSingular 1.6.0 2020-10-27 [1]
BiocStyle * 2.18.1 2020-11-24 [1]
biomformat 1.18.0 2020-10-27 [1]
Biostrings 2.58.0 2020-10-27 [1]
bit 4.0.4 2020-08-04 [2]
bit64 4.0.5 2020-08-30 [2]
bitops 1.0-7 2021-04-24 [2]
blme 1.0-5 2021-01-05 [1]
blob 1.2.2 2021-07-23 [2]
bluster 1.0.0 2020-10-27 [1]
boot 1.3-28 2021-05-03 [2]
broom 0.7.9 2021-07-27 [2]
bslib 0.3.1 2021-10-06 [2]
cachem 1.0.6 2021-08-19 [1]
Cairo 1.5-12.2 2020-07-07 [2]
callr 3.7.0 2021-04-20 [2]
caTools 1.18.2 2021-03-28 [2]
cellranger 1.1.0 2016-07-27 [2]
circlize * 0.4.13 2021-06-09 [1]
cli 3.0.1 2021-07-17 [1]
clue 0.3-60 2021-10-11 [1]
cluster 2.1.2 2021-04-17 [2]
codetools 0.2-18 2020-11-04 [2]
colorout * 1.2-2 2021-04-15 [1]
colorRamps 2.3 2012-10-29 [1]
colorspace 2.0-2 2021-06-24 [1]
ComplexHeatmap * 2.6.2 2020-11-12 [1]
conos * 1.4.3 2021-08-07 [1]
cowplot 1.1.1 2020-12-30 [2]
crayon 1.4.1 2021-02-08 [2]
data.table * 1.14.2 2021-09-27 [2]
DBI 1.1.1 2021-01-15 [2]
DelayedArray 0.16.3 2021-03-24 [1]
DelayedMatrixStats 1.12.3 2021-02-03 [1]
deldir 1.0-6 2021-10-23 [2]
desc 1.4.0 2021-09-28 [1]
DESeq2 1.30.1 2021-02-19 [1]
devtools 2.4.2 2021-06-07 [1]
digest 0.6.28 2021-09-23 [2]
doParallel 1.0.16 2020-10-16 [1]
dplyr 1.0.7 2021-06-18 [2]
dqrng 0.3.0 2021-05-01 [2]
DropletUtils * 1.10.3 2021-02-02 [1]
edgeR * 3.32.1 2021-01-14 [1]
ellipsis 0.3.2 2021-04-29 [2]
evaluate 0.14 2019-05-28 [2]
fansi 0.5.0 2021-05-25 [2]
farver 2.1.0 2021-02-28 [2]
fastmap 1.1.0 2021-01-25 [2]
fitdistrplus 1.1-6 2021-09-28 [2]
flexmix 2.3-17 2020-10-12 [1]
forcats * 0.5.1 2021-01-27 [2]
foreach 1.5.1 2020-10-15 [2]
Formula 1.2-4 2020-10-16 [1]
fs 1.5.0 2020-07-31 [2]
future 1.22.1 2021-08-25 [2]
future.apply 1.8.1 2021-08-10 [2]
genefilter 1.72.1 2021-01-21 [1]
geneplotter 1.68.0 2020-10-27 [1]
generics 0.1.1 2021-10-25 [2]
GenomeInfoDb * 1.26.7 2021-04-08 [1]
GenomeInfoDbData 1.2.4 2021-04-15 [1]
GenomicRanges * 1.42.0 2020-10-27 [1]
GetoptLong 1.0.5 2020-12-15 [1]
ggbeeswarm * 0.6.0 2017-08-07 [1]
ggplot.multistats * 1.0.0 2019-10-28 [1]
ggplot2 * 3.3.5 2021-06-25 [1]
ggrepel * 0.9.1 2021-01-15 [2]
ggridges 0.5.3 2021-01-08 [2]
git2r 0.28.0 2021-01-10 [1]
glmmTMB 1.1.2.3 2021-09-20 [1]
GlobalOptions 0.1.2 2020-06-10 [1]
globals 0.14.0 2020-11-22 [2]
glue 1.4.2 2020-08-27 [2]
goftest 1.2-3 2021-10-07 [2]
googlesheets * 0.3.0 2018-06-29 [1]
gplots 3.1.1 2020-11-28 [2]
gridExtra 2.3 2017-09-09 [2]
grr 0.9.5 2016-08-26 [1]
gtable 0.3.0 2019-03-25 [2]
gtools 3.9.2 2021-06-06 [2]
HDF5Array 1.18.1 2021-02-04 [1]
hexbin 1.28.2 2021-01-08 [2]
highr 0.9 2021-04-16 [2]
hms 1.1.1 2021-09-26 [1]
htmltools 0.5.2 2021-08-25 [2]
htmlwidgets 1.5.4 2021-09-08 [2]
httpuv 1.6.3 2021-09-09 [2]
httr 1.4.2 2020-07-20 [2]
ica * 1.0-2 2018-05-24 [2]
igraph * 1.2.7 2021-10-15 [2]
IRanges * 2.24.1 2020-12-12 [1]
irlba 2.3.3 2019-02-05 [2]
iterators 1.0.13 2020-10-15 [2]
janitor 2.1.0 2021-01-05 [1]
jquerylib 0.1.4 2021-04-26 [2]
jsonlite 1.7.2 2020-12-09 [2]
KernSmooth 2.23-20 2021-05-03 [2]
knitr 1.36 2021-09-29 [1]
later 1.3.0 2021-08-18 [2]
lattice 0.20-45 2021-09-22 [2]
lazyeval 0.2.2 2019-03-15 [2]
R leiden 0.3.8 <NA> [2]
leidenAlg 0.1.1 2021-03-03 [1]
lifecycle 1.0.1 2021-09-24 [2]
limma * 3.46.0 2020-10-27 [1]
listenv 0.8.0 2019-12-05 [2]
lme4 1.1-27.1 2021-06-22 [1]
lmerTest 3.1-3 2020-10-23 [1]
lmtest 0.9-38 2020-09-09 [2]
locfit 1.5-9.4 2020-03-25 [1]
lubridate 1.8.0 2021-10-07 [2]
magick 2.7.3 2021-08-18 [2]
magrittr * 2.0.1 2020-11-17 [1]
MASS * 7.3-54 2021-05-03 [2]
Matrix * 1.3-4 2021-06-01 [2]
Matrix.utils 0.9.8 2020-02-26 [1]
MatrixGenerics * 1.2.1 2021-01-30 [1]
matrixStats * 0.61.0 2021-09-17 [1]
memoise 2.0.0 2021-01-26 [1]
mgcv 1.8-38 2021-10-06 [1]
microbiome 1.12.0 2020-10-27 [1]
mime 0.12 2021-09-28 [1]
miniUI 0.1.1.1 2018-05-18 [2]
minqa 1.2.4 2014-10-09 [1]
modeltools 0.2-23 2020-03-05 [1]
multtest 2.46.0 2020-10-27 [1]
munsell 0.5.0 2018-06-12 [2]
muscat * 1.5.1 2021-04-15 [1]
nlme 3.1-153 2021-09-07 [2]
nloptr 1.2.2.2 2020-07-02 [1]
nnet 7.3-16 2021-05-03 [2]
nnls * 1.4 2012-03-19 [1]
numDeriv 2016.8-1.1 2019-06-06 [2]
parallelly 1.28.1 2021-09-09 [2]
patchwork * 1.1.1 2020-12-17 [2]
pbapply 1.5-0 2021-09-16 [2]
pbkrtest 0.5.1 2021-03-09 [1]
permute 0.9-5 2019-03-12 [1]
phyloseq * 1.34.0 2020-10-27 [1]
pillar 1.6.4 2021-10-18 [1]
pkgbuild 1.2.0 2020-12-15 [1]
pkgconfig 2.0.3 2019-09-22 [2]
pkgload 1.2.3 2021-10-13 [2]
plotly 4.10.0 2021-10-09 [2]
plyr 1.8.6 2020-03-03 [2]
png 0.1-7 2013-12-03 [2]
polyclip 1.10-0 2019-03-14 [2]
prettyunits 1.1.1 2020-01-24 [2]
processx 3.5.2 2021-04-30 [2]
progress 1.2.2 2019-05-16 [2]
promises 1.2.0.1 2021-02-11 [2]
ps 1.6.0 2021-02-28 [2]
purrr * 0.3.4 2020-04-17 [2]
R.methodsS3 1.8.1 2020-08-26 [1]
R.oo 1.24.0 2020-08-26 [1]
R.utils 2.11.0 2021-09-26 [1]
R6 2.5.1 2021-08-19 [2]
RANN 2.6.1 2019-01-08 [2]
rbibutils 2.2.4 2021-10-11 [1]
RColorBrewer * 1.1-2 2014-12-07 [2]
Rcpp 1.0.7 2021-07-07 [1]
RcppAnnoy 0.0.19 2021-07-30 [1]
RCurl 1.98-1.5 2021-09-17 [1]
Rdpack 2.1.2 2021-06-01 [1]
readxl * 1.3.1 2019-03-13 [2]
registry 0.5-1 2019-03-05 [1]
remotes 2.4.1 2021-09-29 [1]
reshape2 1.4.4 2020-04-09 [2]
reticulate * 1.22 2021-09-17 [2]
rhdf5 2.34.0 2020-10-27 [1]
rhdf5filters 1.2.1 2021-05-03 [1]
Rhdf5lib 1.12.1 2021-01-26 [1]
rjson 0.2.20 2018-06-08 [1]
rlang 0.4.12 2021-10-18 [2]
rmarkdown 2.11 2021-09-14 [1]
ROCR 1.0-11 2020-05-02 [2]
rpart 4.1-15 2019-04-12 [2]
rprojroot 2.0.2 2020-11-15 [2]
RSQLite 2.2.8 2021-08-21 [1]
rsvd 1.0.5 2021-04-16 [1]
Rtsne 0.15 2018-11-10 [2]
S4Vectors * 0.28.1 2020-12-09 [1]
sandwich 3.0-1 2021-05-18 [1]
sass 0.4.0 2021-05-12 [2]
scales * 1.1.1 2020-05-11 [2]
scater * 1.18.6 2021-02-26 [1]
scattermore 0.7 2020-11-24 [2]
sccore 1.0.0 2021-10-07 [1]
scran * 1.18.7 2021-04-16 [1]
sctransform 0.3.2 2020-12-16 [2]
scuttle 1.0.4 2020-12-17 [1]
seriation * 1.3.1 2021-10-16 [1]
sessioninfo 1.1.1 2018-11-05 [1]
Seurat * 4.0.5 2021-10-17 [2]
SeuratObject * 4.0.2 2021-06-09 [2]
shape 1.4.6 2021-05-19 [1]
shiny 1.7.1 2021-10-02 [2]
SingleCellExperiment * 1.12.0 2020-10-27 [1]
snakecase 0.11.0 2019-05-25 [1]
sparseMatrixStats 1.2.1 2021-02-02 [1]
spatstat.core 2.3-0 2021-07-16 [2]
spatstat.data 2.1-0 2021-03-21 [2]
spatstat.geom 2.3-0 2021-10-09 [2]
spatstat.sparse 2.0-0 2021-03-16 [2]
spatstat.utils 2.2-0 2021-06-14 [2]
statmod 1.4.36 2021-05-10 [1]
stringi 1.7.4 2021-08-25 [1]
stringr * 1.4.0 2019-02-10 [2]
SummarizedExperiment * 1.20.0 2020-10-27 [1]
survival 3.2-13 2021-08-24 [2]
tensor 1.5 2012-05-05 [2]
testthat 3.1.0 2021-10-04 [2]
tibble 3.1.5 2021-09-30 [1]
tidyr 1.1.4 2021-09-27 [2]
tidyselect 1.1.1 2021-04-30 [2]
TMB 1.7.22 2021-09-28 [1]
TSP 1.1-11 2021-10-06 [1]
usethis 2.1.2 2021-10-25 [1]
utf8 1.2.2 2021-07-24 [1]
uwot * 0.1.10 2020-12-15 [2]
variancePartition 1.20.0 2020-10-27 [1]
vctrs 0.3.8 2021-04-29 [2]
vegan 2.5-7 2020-11-28 [1]
vipor 0.4.5 2017-03-22 [1]
viridis * 0.6.2 2021-10-13 [1]
viridisLite * 0.4.0 2021-04-13 [1]
whisker 0.4 2019-08-28 [1]
withr 2.4.2 2021-04-18 [2]
workflowr * 1.6.2 2020-04-30 [1]
xfun 0.27 2021-10-18 [1]
XML 3.99-0.8 2021-09-17 [1]
xtable 1.8-4 2019-04-21 [2]
XVector 0.30.0 2020-10-27 [1]
yaml 2.2.1 2020-02-01 [2]
zlibbioc 1.36.0 2020-10-27 [1]
zoo 1.8-9 2021-03-09 [2]
source
CRAN (R 4.0.0)
CRAN (R 4.0.5)
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
Bioconductor
Bioconductor
Bioconductor
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.2)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Github (jalvesaq/colorout@79931fd)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.5)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
Bioconductor
Bioconductor
CRAN (R 4.0.5)
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.2)
CRAN (R 4.0.0)
CRAN (R 4.0.5)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
<NA>
CRAN (R 4.0.3)
CRAN (R 4.0.5)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.0)
Github (HelenaLC/muscat@c939663)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
CRAN (R 4.0.5)
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.5)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.1)
CRAN (R 4.0.5)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.5)
CRAN (R 4.0.0)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.1)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.5)
CRAN (R 4.0.5)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
[1] /pstore/home/macnairw/lib/conda_r3.12
[2] /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/R/library
R -- Package was removed from disk.
sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/libopenblasp-r0.3.12.so
locale:
[1] LC_CTYPE=C LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 grid stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] ggbeeswarm_0.6.0 ggrepel_0.9.1
[3] reticulate_1.22 MASS_7.3-54
[5] phyloseq_1.34.0 ANCOMBC_1.0.5
[7] ica_1.0-2 purrr_0.3.4
[9] nnls_1.4 muscat_1.5.1
[11] DropletUtils_1.10.3 edgeR_3.32.1
[13] limma_3.46.0 googlesheets_0.3.0
[15] scran_1.18.7 uwot_0.1.10
[17] scater_1.18.6 SingleCellExperiment_1.12.0
[19] SummarizedExperiment_1.20.0 Biobase_2.50.0
[21] GenomicRanges_1.42.0 GenomeInfoDb_1.26.7
[23] IRanges_2.24.1 S4Vectors_0.28.1
[25] BiocGenerics_0.36.1 MatrixGenerics_1.2.1
[27] matrixStats_0.61.0 BiocParallel_1.24.1
[29] ggplot.multistats_1.0.0 patchwork_1.1.1
[31] seriation_1.3.1 ComplexHeatmap_2.6.2
[33] SeuratObject_4.0.2 Seurat_4.0.5
[35] conos_1.4.3 igraph_1.2.7
[37] Matrix_1.3-4 readxl_1.3.1
[39] forcats_0.5.1 ggplot2_3.3.5
[41] scales_1.1.1 viridis_0.6.2
[43] viridisLite_0.4.0 assertthat_0.2.1
[45] stringr_1.4.0 data.table_1.14.2
[47] magrittr_2.0.1 circlize_0.4.13
[49] RColorBrewer_1.1-2 BiocStyle_2.18.1
[51] colorout_1.2-2 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] rsvd_1.0.5 ps_1.6.0
[3] foreach_1.5.1 lmtest_0.9-38
[5] rprojroot_2.0.2 crayon_1.4.1
[7] spatstat.core_2.3-0 rbibutils_2.2.4
[9] rhdf5filters_1.2.1 Matrix.utils_0.9.8
[11] nlme_3.1-153 backports_1.2.1
[13] rlang_0.4.12 XVector_0.30.0
[15] ROCR_1.0-11 microbiome_1.12.0
[17] irlba_2.3.3 callr_3.7.0
[19] nloptr_1.2.2.2 rjson_0.2.20
[21] bit64_4.0.5 glue_1.4.2
[23] sctransform_0.3.2 processx_3.5.2
[25] pbkrtest_0.5.1 vipor_0.4.5
[27] spatstat.sparse_2.0-0 AnnotationDbi_1.52.0
[29] spatstat.geom_2.3-0 tidyselect_1.1.1
[31] usethis_2.1.2 fitdistrplus_1.1-6
[33] variancePartition_1.20.0 XML_3.99-0.8
[35] tidyr_1.1.4 zoo_1.8-9
[37] xtable_1.8-4 evaluate_0.14
[39] cli_3.0.1 Rdpack_2.1.2
[41] scuttle_1.0.4 zlibbioc_1.36.0
[43] miniUI_0.1.1.1 whisker_0.4
[45] bslib_0.3.1 rpart_4.1-15
[47] betareg_3.1-4 shiny_1.7.1
[49] BiocSingular_1.6.0 xfun_0.27
[51] clue_0.3-60 pkgbuild_1.2.0
[53] multtest_2.46.0 cluster_2.1.2
[55] caTools_1.18.2 TSP_1.1-11
[57] biomformat_1.18.0 tibble_3.1.5
[59] ape_5.5 listenv_0.8.0
[61] Biostrings_2.58.0 png_0.1-7
[63] permute_0.9-5 future_1.22.1
[65] withr_2.4.2 bitops_1.0-7
[67] plyr_1.8.6 cellranger_1.1.0
[69] dqrng_0.3.0 pillar_1.6.4
[71] gplots_3.1.1 GlobalOptions_0.1.2
[73] cachem_1.0.6 fs_1.5.0
[75] flexmix_2.3-17 GetoptLong_1.0.5
[77] DelayedMatrixStats_1.12.3 vctrs_0.3.8
[79] ellipsis_0.3.2 generics_0.1.1
[81] devtools_2.4.2 tools_4.0.5
[83] beeswarm_0.4.0 munsell_0.5.0
[85] DelayedArray_0.16.3 pkgload_1.2.3
[87] fastmap_1.1.0 compiler_4.0.5
[89] abind_1.4-5 httpuv_1.6.3
[91] sessioninfo_1.1.1 plotly_4.10.0
[93] GenomeInfoDbData_1.2.4 gridExtra_2.3
[95] glmmTMB_1.1.2.3 lattice_0.20-45
[97] deldir_1.0-6 utf8_1.2.2
[99] later_1.3.0 dplyr_1.0.7
[101] jsonlite_1.7.2 pbapply_1.5-0
[103] sparseMatrixStats_1.2.1 genefilter_1.72.1
[105] lazyeval_0.2.2 promises_1.2.0.1
[107] doParallel_1.0.16 R.utils_2.11.0
[109] goftest_1.2-3 spatstat.utils_2.2-0
[111] sandwich_3.0-1 rmarkdown_2.11
[113] cowplot_1.1.1 blme_1.0-5
[115] statmod_1.4.36 Rtsne_0.15
[117] HDF5Array_1.18.1 survival_3.2-13
[119] numDeriv_2016.8-1.1 yaml_2.2.1
[121] htmltools_0.5.2 memoise_2.0.0
[123] modeltools_0.2-23 locfit_1.5-9.4
[125] digest_0.6.28 mime_0.12
[127] registry_0.5-1 RSQLite_2.2.8
[129] future.apply_1.8.1 remotes_2.4.1
[131] blob_1.2.2 vegan_2.5-7
[133] R.oo_1.24.0 Formula_1.2-4
[135] splines_4.0.5 Rhdf5lib_1.12.1
[137] Cairo_1.5-12.2 RCurl_1.98-1.5
[139] broom_0.7.9 hms_1.1.1
[141] rhdf5_2.34.0 colorspace_2.0-2
[143] BiocManager_1.30.16 shape_1.4.6
[145] nnet_7.3-16 sass_0.4.0
[147] Rcpp_1.0.7 RANN_2.6.1
[149] fansi_0.5.0 parallelly_1.28.1
[151] R6_2.5.1 ggridges_0.5.3
[153] lifecycle_1.0.1 bluster_1.0.0
[155] minqa_1.2.4 testthat_3.1.0
[157] leiden_0.3.8 jquerylib_0.1.4
[159] snakecase_0.11.0 desc_1.4.0
[161] RcppAnnoy_0.0.19 iterators_1.0.13
[163] TMB_1.7.22 htmlwidgets_1.5.4
[165] beachmat_2.6.4 polyclip_1.10-0
[167] mgcv_1.8-38 globals_0.14.0
[169] leidenAlg_0.1.1 codetools_0.2-18
[171] lubridate_1.8.0 gtools_3.9.2
[173] prettyunits_1.1.1 R.methodsS3_1.8.1
[175] gtable_0.3.0 DBI_1.1.1
[177] git2r_0.28.0 tensor_1.5
[179] httr_1.4.2 highr_0.9
[181] KernSmooth_2.23-20 stringi_1.7.4
[183] progress_1.2.2 reshape2_1.4.4
[185] farver_2.1.0 annotate_1.68.0
[187] hexbin_1.28.2 magick_2.7.3
[189] colorRamps_2.3 sccore_1.0.0
[191] boot_1.3-28 grr_0.9.5
[193] BiocNeighbors_1.8.2 lme4_1.1-27.1
[195] ade4_1.7-18 geneplotter_1.68.0
[197] scattermore_0.7 DESeq2_1.30.1
[199] bit_4.0.4 spatstat.data_2.1-0
[201] janitor_2.1.0 pkgconfig_2.0.3
[203] lmerTest_3.1-3 knitr_1.36