Last updated: 2021-09-14

Checks: 4 3

Knit directory: MS_lesions/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish or wflow_build to ensure that the code is always run in an empty environment.

The following objects were defined in the global environment when these results were created:

Name Class Size
q function 1008 bytes

The command set.seed(20210118) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • fig_genes_over_umap
  • load_fine_expression
  • load_inputs
  • load_popalign_outputs
  • load_soup
  • load_umap
  • plot_celltypes_over_umap
  • plot_genes
  • plot_genes_dotplot
  • plot_genes_over_umap
  • plot_scores_by_type_scaled
  • plot_scores_by_type_scaled_2
  • plot_scores_by_type_unscaled
  • plot_scores_over_lesions
  • plot_scores_over_umap
  • plot_umap_celltypes
  • run_onmf
  • save_outputs
  • save_outputs_for_popalign
  • save_sub_sces
  • session_info
  • session-info-chunk-inserted-by-workflowr
  • setup_input
  • setup_outputs

To ensure reproducibility of the results, delete the cache directory ms08_modules_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version dc248fa. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rprofile
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    ._MS_lesions.sublime-project
    Ignored:    ._heatmap_check.png
    Ignored:    ._metadata_checked_20210712 - subject_metadata.csv
    Ignored:    ._model_example_fix.png
    Ignored:    .log/
    Ignored:    MS_lesions.sublime-project
    Ignored:    MS_lesions.sublime-workspace
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/fig_muscat_cache/
    Ignored:    analysis/ms02_doublet_id_cache/
    Ignored:    analysis/ms03_SampleQC_cache/
    Ignored:    analysis/ms04_conos_cache/
    Ignored:    analysis/ms05_splitting_cache/
    Ignored:    analysis/ms06_sccaf_cache/
    Ignored:    analysis/ms07_soup_cache/
    Ignored:    analysis/ms08_modules_cache/
    Ignored:    analysis/ms09_ancombc_cache/
    Ignored:    analysis/ms09_ancombc_clean_1e3_cache/
    Ignored:    analysis/ms09_ancombc_clean_2e3_cache/
    Ignored:    analysis/ms10_muscat_run01_cache/
    Ignored:    analysis/ms10_muscat_run02_cache/
    Ignored:    analysis/ms10_muscat_template_broad_cache/
    Ignored:    analysis/ms10_muscat_template_fine_cache/
    Ignored:    analysis/ms11_paga_cache/
    Ignored:    analysis/ms12_markers_cache/
    Ignored:    analysis/ms13_labelling_cache/
    Ignored:    analysis/ms14_lesions_cache/
    Ignored:    analysis/ms15_mofa_sample_gm_cache/
    Ignored:    analysis/ms15_mofa_sample_gm_superclean_cache/
    Ignored:    analysis/ms15_mofa_sample_wm_cache/
    Ignored:    analysis/ms15_mofa_sample_wm_new_meta_cache/
    Ignored:    analysis/ms15_mofa_sample_wm_superclean_cache/
    Ignored:    analysis/ms15_patients_cache/
    Ignored:    analysis/ms15_patients_gm_cache/
    Ignored:    analysis/ms15_patients_sample_level_cache/
    Ignored:    analysis/ms15_patients_w_ms_cache/
    Ignored:    analysis/supp06_sccaf_cache/
    Ignored:    analysis/supp07_superclean_check_cache/
    Ignored:    analysis/supp09_ancombc_cache/
    Ignored:    analysis/supp10_muscat_cache/
    Ignored:    analysis/supp10_muscat_ctrl_gm_vs_wm_cache/
    Ignored:    analysis/supp10_muscat_heatmaps_cache/
    Ignored:    analysis/supp10_muscat_olg_pc1_cache/
    Ignored:    analysis/supp10_muscat_olg_pc2_cache/
    Ignored:    analysis/supp10_muscat_olg_pc_cache/
    Ignored:    analysis/supp10_muscat_regression_cache/
    Ignored:    analysis/supp10_muscat_soup_cache/
    Ignored:    code/.recovery/
    Ignored:    code/muscat_plan.txt
    Ignored:    data/
    Ignored:    figures/
    Ignored:    output/
    Ignored:    tmp/

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  analysis/supp09_ancombc_mixed.Rmd

Unstaged changes:
    Modified:   analysis/ms08_modules.Rmd
    Modified:   analysis/ms09_ancombc.Rmd
    Modified:   analysis/ms14_lesions.Rmd
    Modified:   analysis/ms15_mofa_sample_wm_new_meta.Rmd
    Modified:   code/dev_check_pmi_distns_20210824.R
    Modified:   code/ms00_utils.R
    Modified:   code/ms08_modules.R
    Modified:   code/ms14_lesions.R
    Modified:   code/ms15_mofa.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ms08_modules.Rmd) and HTML (docs/ms08_modules.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2b5e1cc Macnair 2021-09-03 Tweak ms08_modules
html 2b5e1cc Macnair 2021-09-03 Tweak ms08_modules
Rmd 1342e46 Macnair 2021-08-24 Update module analysis
html 1342e46 Macnair 2021-08-24 Update module analysis
Rmd eef8a1c Macnair 2021-04-29 Minor tweaks to allow rerunning on Roche servers
Rmd 129c53d Macnair 2021-04-16 Renamed a lot of things to add ms07_soup

Done

  • redo GSEA with FGSEA
    • add FGSEA calcs to get_pop_results
    • add FGSEA calc to get_pop_results
  • redo GSEA with FGSEA plus randomly ordered other genes

To-do

  • try with pseudobulk instead?

Setup / definitions

Libraries

Helper functions

source('code/ms00_utils.R')
source('code/ms08_modules.R')
source_python('code/ms08_modules.py')

Inputs

# base inputs
sce_f       = 'data/sce_raw/ms_sce.rds'
labels_f    = 'data/byhand_markers/validation_markers_2021-05-31.csv'
labelled_f  = 'output/ms13_labelling/conos_labelled_2021-05-31.txt.gz'
meta_f      = 'data/metadata/metadata_updated_20201127.txt'

# define pseudobulk files
soup_dir    = 'output/ms07_soup'
date_soup   = '2021-06-01'
pb_fine_f   = sprintf('%s/pb_sum_fine_%s.rds', soup_dir, date_soup)
prop_fine_f = sprintf('%s/pb_prop_fine_%s.rds', soup_dir, date_soup)

# broad level pseudobulk files
pb_broad_f  = file.path(soup_dir, 'pb_sum_broad_2021-06-01.rds')
pb_fine_f   = file.path(soup_dir, 'pb_sum_fine_2021-06-01.rds')
prop_fine_f = file.path(soup_dir, 'pb_prop_fine_2021-06-01.rds')
pb_soup_f   = file.path(soup_dir, 'pb_soup_broad_maximum_2021-06-01.rds')
gtf_f       = 'data/gtf/Homo_sapiens.GRCh38.96.filtered.preMRNA.gtf'

Outputs

# set up directory
save_dir    = 'output/ms08_modules'
date_tag    = '2021-08-18'
if (!dir.exists(save_dir))
    dir.create(save_dir)
ncores      = 12

# output file patterns
genes_pat   = sprintf('%s/%s/features_%s_%s.tsv', save_dir, '%s', date_tag, '%s')
mtx_pat     = sprintf('%s/%s/counts_%s_%s.mtx', save_dir, '%s', date_tag, '%s')
sce_pat     = sprintf('%s/%s/sce_sub_%s_%s.rds', save_dir, '%s', date_tag, '%s')
ok_gs_pat   = sprintf('%s/%s/ok_gs_%s_%s.txt', save_dir, '%s', date_tag, '%s')
pop_pat     = sprintf('%s/%s/pop_%s_%s.p', save_dir, '%s', '%s', date_tag)
res_pat     = sprintf('%s/%s/res_%s_%s.rds', save_dir, '%s', date_tag, '%s')
go_pat      = sprintf('%s/%s/go_dt_%s_%s_%s.rds', save_dir, '%s', date_tag, '%s', '%s')

# lists of celltypes for each run
spec_list   = list(
  oligo_opc       = list(type_broad = c('OPCs / COPs', 'Oligodendrocytes')),
  micro_immune    = list(type_broad = c('Microglia', 'Immune')),
  excitatory      = list(type_broad = 'Excitatory neurons'),
  inhibitory      = list(type_broad = 'Inhibitory neurons'),
  astrocytes      = list(type_broad = c('Astrocytes')),
  endo_stromal    = list(type_broad = c('Endothelial cells', 'Pericytes')),
  microglia       = list(type_broad = c('Microglia')),
  immune          = list(type_broad = c('Immune'))
  )
assert_that(length(spec_list) == length(unique(names(spec_list))))
[1] TRUE
group_list  = names(spec_list)

# how many per fine celltype?
n_sample    = 2e3
n_genes     = 2e3
max_soup    = 0.1
ok_types    = 'protein_coding'

# umap params
umap_many_f = 'output/ms04_conos/conos_umap_sub_2021-02-11.txt'
# umap_ps   = list(
#   min_dist    = 0.1,
#   spread      = 8
#   )
umap_ps   = list(
  min_dist    = 1,
  spread      = 2
  )

# define xls file to save
xl_f      = sprintf('%s/modules_genes_%s.xlsx', save_dir, date_tag)

Load inputs

labels_dt   = load_names_dt(labels_f) %>%
  .[, cluster_id := type_fine]
conos_dt    = load_labelled_dt(labelled_f, labels_f)
meta_dt     = load_meta_dt(meta_f)
pb_soup     = pb_soup_f %>% readRDS
pb_broad    = pb_broad_f %>% readRDS
contam_dt   = calc_contam_dt(pb_soup, pb_broad, min_cells = 10)
rm(pb_soup, pb_broad)
biotypes_dt = get_biotypes_dt(gtf_f)
fine_dt     = load_fine_dt(pb_fine_f, prop_fine_f, labels_dt)
umap_dt     = umap_many_f %>% fread %>% 
  .[ min_dist == umap_ps$min_dist & spread == umap_ps$spread ] %>%
  .[, .(cell_id, UMAP1, UMAP2)]

Processing / calculations

save_sub_sces(spec_list, sce_f, sce_pat, ok_gs_pat, conos_dt, contam_dt, 
  biotypes_dt, n_sample, n_genes, max_soup, ok_types, save_dir)
already done!
NULL
save_outputs_for_popalign(group_list, sce_pat, mtx_pat, genes_pat)
already done!
NULL
run_onmf(save_dir, date_tag, group_list, ncores = ncores)
pop_list    = group_list %>%
  map(~get_pop_results(.x, res_pat, sce_pat, ok_gs_pat, go_pat, pop_pat, 
    conos_dt)) %>% setNames(group_list)

Analysis

Median module scores by celltype (scaled)

for (g in group_list) {
  cat('### ', g, '\n')
  hm = plot_scores_by_celltype(pop_list[[g]]$scores_dt, pop_list[[g]]$k_order,
    what = 'scaled')
  if (!is.null(hm))
    draw(hm)
  cat('\n\n')
}

oligo_opc

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

micro_immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

excitatory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

inhibitory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

astrocytes

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

endo_stromal

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

microglia

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

Median module scores by celltype (proportions)

for (g in group_list) {
  cat('### ', g, '\n')
  hm = plot_scores_by_celltype(pop_list[[g]]$scores_dt, pop_list[[g]]$k_order,
    what = 'propns')
  if (!is.null(hm))
    draw(hm)
  cat('\n\n')
}

oligo_opc

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

micro_immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

excitatory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

inhibitory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

astrocytes

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

endo_stromal

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

microglia

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

Distribution of module scores over UMAP

for (g in group_list) {
  cat('### ', g, '\n')
  print(plot_scores_over_umap(pop_list[[g]]$scores_dt, pop_list[[g]]$k_order, umap_dt))
  cat('\n\n')
}

oligo_opc

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

micro_immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

excitatory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

inhibitory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

astrocytes

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

endo_stromal

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

microglia

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

Most important genes per module

for (g in group_list) {
  cat('### ', g, '\n')
  print(plot_biggest_genes_dotplot(g, spec_list, pop_list[[g]]$w_mat, 
    pop_list[[g]]$k_order, fine_dt, w2_cut = 0.02))
  cat('\n\n')
}

oligo_opc

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

micro_immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

excitatory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

inhibitory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

astrocytes

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

endo_stromal

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

microglia

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24
for (g in group_list) {
  cat('### ', g, '\n')
  hm  = plot_biggest_genes(pop_list[[g]]$w_mat, pop_list[[g]]$k_order, 
    w2_cut = 0.02)
  if (!is.null(hm))
    draw(hm)
  cat('\n\n')
}

Distribution of top genes over UMAP

for (g in group_list) {
  cat('### ', g, '\n')
  print(plot_genes_over_umap(pop_list[[g]]$genes_dt, umap_dt))
  cat('\n\n')
}

oligo_opc

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

micro_immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

excitatory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

inhibitory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

astrocytes

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

endo_stromal

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

microglia

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

Median module scores by celltype (scaled)

for (g in group_list) {
  cat('### ', g, '\n')
  hm = plot_scores_by_celltype(pop_list[[g]]$scores_dt, pop_list[[g]]$k_order,
    what = 'scaled')
  if (!is.null(hm))
    draw(hm)
  cat('\n\n')
}

oligo_opc

Version Author Date
2b5e1cc Macnair 2021-09-03

micro_immune

Version Author Date
2b5e1cc Macnair 2021-09-03

excitatory

Version Author Date
2b5e1cc Macnair 2021-09-03

inhibitory

Version Author Date
2b5e1cc Macnair 2021-09-03

astrocytes

Version Author Date
2b5e1cc Macnair 2021-09-03

endo_stromal

Version Author Date
2b5e1cc Macnair 2021-09-03

microglia

Version Author Date
2b5e1cc Macnair 2021-09-03

immune

Version Author Date
2b5e1cc Macnair 2021-09-03

Enriched GO terms per module (using 2k genes for GSEA)

source('code/ms08_modules.R')
for (g in group_list) {
  cat('### ', g, '\n')
  hm  = plot_enriched_sets(pop_list[[g]]$go_std_dt, pop_list[[g]]$k_order)
  if (!is.null(hm))
    draw(hm)
  cat('\n\n')
}

oligo_opc

micro_immune

excitatory

inhibitory

astrocytes

endo_stromal

microglia

immune

Enriched GO terms per module (using more genes for GSEA)

for (g in group_list) {
  cat('### ', g, '\n')
  hm  = plot_enriched_sets(pop_list[[g]]$go_all_dt, pop_list[[g]]$k_order)
  if (!is.null(hm))
    draw(hm)
  cat('\n\n')
}

oligo_opc

micro_immune

excitatory

inhibitory

astrocytes

endo_stromal

microglia

immune

UMAP celltype reference

(plot_umap_celltypes(umap_dt, conos_dt))

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24
feat_list   = scores_dt$feat %>% unique %>% sort %>% .[k_order]
for (f in feat_list) {
  cat('### ', f, '\n')
  print(plot_scores_over_lesions(scores_dt, f, meta_dt))
  cat('\n\n')
}

Distribution of fine celltypes over UMAP

for (g in group_list) {
  cat('### ', g, '\n')
  print(plot_celltypes_over_umap(spec_list[[g]], conos_dt, umap_dt))
  cat('\n\n')
}

oligo_opc

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

micro_immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

excitatory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

inhibitory

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

astrocytes

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

endo_stromal

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

microglia

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

immune

Version Author Date
2b5e1cc Macnair 2021-09-03
1342e46 Macnair 2021-08-24

Outputs

save_module_genes_to_xl(pop_list, xl_f)
NULL

Figures

Selected genes over UMAP

g         = 'oligo_opc'
sel_genes = c("TNR", "LRP1B", "CAMK2D", "QKI", "NCAM2", "NLGN1", "KIRREL3", 
  "MBP", "GLUL", "ELL2")
(plot_sel_genes_over_umap(g, pop_list, sce_pat, umap_dt, sel_genes))

Version Author Date
2b5e1cc Macnair 2021-09-03
devtools::session_info()
Registered S3 method overwritten by 'cli':
  method     from         
  print.boxx spatstat.geom
- Session info ---------------------------------------------------------------
 setting  value                       
 version  R version 4.0.5 (2021-03-31)
 os       CentOS Linux 7 (Core)       
 system   x86_64, linux-gnu           
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 ctype    C                           
 tz       Europe/Zurich               
 date     2021-09-14                  

- Packages -------------------------------------------------------------------
 ! package              * version    date       lib
   abind                  1.4-5      2016-07-21 [2]
   annotate               1.68.0     2020-10-27 [1]
   AnnotationDbi          1.52.0     2020-10-27 [1]
   assertthat           * 0.2.1      2019-03-21 [2]
   backports              1.2.1      2020-12-09 [2]
   beachmat               2.6.4      2020-12-20 [1]
   beeswarm               0.4.0      2021-06-01 [1]
   Biobase              * 2.50.0     2020-10-27 [1]
   BiocGenerics         * 0.36.1     2021-04-16 [1]
   BiocManager            1.30.16    2021-06-15 [1]
   BiocNeighbors          1.8.2      2020-12-07 [1]
   BiocParallel         * 1.24.1     2020-11-06 [1]
   BiocSingular           1.6.0      2020-10-27 [1]
   BiocStyle            * 2.18.1     2020-11-24 [1]
   Biostrings             2.58.0     2020-10-27 [1]
   bit                    4.0.4      2020-08-04 [2]
   bit64                  4.0.5      2020-08-30 [2]
   bitops                 1.0-7      2021-04-24 [2]
   blme                   1.0-5      2021-01-05 [1]
   blob                   1.2.1      2020-01-20 [2]
   boot                   1.3-28     2021-05-03 [2]
   broom                  0.7.7      2021-06-13 [2]
   bslib                  0.2.5.1    2021-05-18 [2]
   cachem                 1.0.5      2021-05-15 [1]
   Cairo                  1.5-12.2   2020-07-07 [2]
   callr                  3.7.0      2021-04-20 [2]
   caTools                1.18.2     2021-03-28 [2]
   circlize             * 0.4.13     2021-06-09 [1]
   cli                    3.0.1      2021-07-17 [1]
   clue                   0.3-59     2021-04-16 [1]
   cluster                2.1.2      2021-04-17 [2]
   codetools              0.2-18     2020-11-04 [2]
   colorout             * 1.2-2      2021-04-15 [1]
   colorRamps             2.3        2012-10-29 [1]
   colorspace             2.0-2      2021-06-24 [1]
   ComplexHeatmap       * 2.6.2      2020-11-12 [1]
   cowplot                1.1.1      2020-12-30 [2]
   crayon                 1.4.1      2021-02-08 [2]
   data.table           * 1.14.0     2021-02-21 [2]
   DBI                    1.1.1      2021-01-15 [2]
   DelayedArray           0.16.3     2021-03-24 [1]
   DelayedMatrixStats     1.12.3     2021-02-03 [1]
   deldir                 0.2-10     2021-02-16 [2]
   desc                   1.3.0      2021-03-05 [2]
   DESeq2                 1.30.1     2021-02-19 [1]
   devtools               2.4.2      2021-06-07 [1]
   digest                 0.6.27     2020-10-24 [2]
   doParallel             1.0.16     2020-10-16 [1]
   dplyr                  1.0.7      2021-06-18 [2]
   edgeR                  3.32.1     2021-01-14 [1]
   ellipsis               0.3.2      2021-04-29 [2]
   evaluate               0.14       2019-05-28 [2]
   fansi                  0.5.0      2021-05-25 [2]
   farver                 2.1.0      2021-02-28 [2]
   fastmap                1.1.0      2021-01-25 [2]
   fastmatch              1.1-0      2017-01-28 [1]
   fgsea                * 1.16.0     2020-10-27 [1]
   fitdistrplus           1.1-5      2021-05-28 [2]
   forcats              * 0.5.1      2021-01-27 [2]
   foreach                1.5.1      2020-10-15 [2]
   fs                     1.5.0      2020-07-31 [2]
   future               * 1.21.0     2020-12-10 [2]
   future.apply           1.7.0      2021-01-04 [2]
   genefilter             1.72.1     2021-01-21 [1]
   geneplotter            1.68.0     2020-10-27 [1]
   generics               0.1.0      2020-10-31 [2]
   GenomeInfoDb         * 1.26.7     2021-04-08 [1]
   GenomeInfoDbData       1.2.4      2021-04-15 [1]
   GenomicAlignments      1.26.0     2020-10-27 [1]
   GenomicRanges        * 1.42.0     2020-10-27 [1]
   GetoptLong             1.0.5      2020-12-15 [1]
   ggbeeswarm             0.6.0      2017-08-07 [1]
   ggplot.multistats    * 1.0.0      2019-10-28 [1]
   ggplot2              * 3.3.5      2021-06-25 [1]
   ggrepel                0.9.1      2021-01-15 [2]
   ggridges               0.5.3      2021-01-08 [2]
   git2r                  0.28.0     2021-01-10 [1]
   glmmTMB                1.0.2.1    2020-07-02 [1]
   GlobalOptions          0.1.2      2020-06-10 [1]
   globals                0.14.0     2020-11-22 [2]
   glue                   1.4.2      2020-08-27 [2]
   goftest                1.2-2      2019-12-02 [2]
   gplots                 3.1.1      2020-11-28 [2]
   gridExtra              2.3        2017-09-09 [2]
   gtable                 0.3.0      2019-03-25 [2]
   gtools                 3.9.2      2021-06-06 [2]
   hexbin                 1.28.2     2021-01-08 [2]
   highr                  0.9        2021-04-16 [2]
   hms                    1.1.0      2021-05-17 [1]
   htmltools              0.5.1.1    2021-01-22 [2]
   htmlwidgets            1.5.3      2020-12-10 [2]
   httpuv                 1.6.1      2021-05-07 [2]
   httr                   1.4.2      2020-07-20 [2]
   ica                    1.0-2      2018-05-24 [2]
   igraph                 1.2.6      2020-10-06 [2]
   IRanges              * 2.24.1     2020-12-12 [1]
   irlba                  2.3.3      2019-02-05 [2]
   iterators              1.0.13     2020-10-15 [2]
   janitor                2.1.0      2021-01-05 [1]
   jquerylib              0.1.4      2021-04-26 [2]
   jsonlite               1.7.2      2020-12-09 [2]
   KernSmooth             2.23-20    2021-05-03 [2]
   knitr                  1.33       2021-04-24 [1]
   labeling               0.4.2      2020-10-20 [2]
   later                  1.2.0      2021-04-23 [2]
   lattice                0.20-44    2021-05-02 [2]
   lazyeval               0.2.2      2019-03-15 [2]
 R leiden                 0.3.8      <NA>       [2]
   lifecycle              1.0.0      2021-02-15 [2]
   limma                  3.46.0     2020-10-27 [1]
   listenv                0.8.0      2019-12-05 [2]
   lme4                   1.1-27.1   2021-06-22 [1]
   lmerTest               3.1-3      2020-10-23 [1]
   lmtest                 0.9-38     2020-09-09 [2]
   locfit                 1.5-9.4    2020-03-25 [1]
   lubridate              1.7.10     2021-02-26 [2]
   magrittr             * 2.0.1      2020-11-17 [1]
   MASS                   7.3-54     2021-05-03 [2]
   Matrix               * 1.3-4      2021-06-01 [2]
   MatrixGenerics       * 1.2.1      2021-01-30 [1]
   matrixStats          * 0.60.0     2021-07-26 [1]
   memoise                2.0.0      2021-01-26 [1]
   mgcv                   1.8-36     2021-06-01 [1]
   mime                   0.11       2021-06-23 [1]
   miniUI                 0.1.1.1    2018-05-18 [2]
   minqa                  1.2.4      2014-10-09 [1]
   munsell                0.5.0      2018-06-12 [2]
   muscat                 1.5.1      2021-04-15 [1]
   nlme                   3.1-152    2021-02-04 [2]
   nloptr                 1.2.2.2    2020-07-02 [1]
   numDeriv               2016.8-1.1 2019-06-06 [2]
   parallelly             1.26.0     2021-06-09 [2]
   patchwork              1.1.1      2020-12-17 [2]
   pbapply                1.4-3      2020-08-18 [2]
   pbkrtest               0.5.1      2021-03-09 [1]
   pillar                 1.6.2      2021-07-29 [1]
   pkgbuild               1.2.0      2020-12-15 [1]
   pkgconfig              2.0.3      2019-09-22 [2]
   pkgload                1.2.1      2021-04-06 [2]
   plotly                 4.9.3      2021-01-10 [2]
   plyr                   1.8.6      2020-03-03 [2]
   png                    0.1-7      2013-12-03 [2]
   polyclip               1.10-0     2019-03-14 [2]
   prettyunits            1.1.1      2020-01-24 [2]
   processx               3.5.2      2021-04-30 [2]
   progress               1.2.2      2019-05-16 [2]
   promises               1.2.0.1    2021-02-11 [2]
   ps                     1.6.0      2021-02-28 [2]
   purrr                * 0.3.4      2020-04-17 [2]
   R.methodsS3            1.8.1      2020-08-26 [1]
   R.oo                   1.24.0     2020-08-26 [1]
   R.utils                2.10.1     2020-08-26 [1]
   R6                     2.5.0      2020-10-28 [2]
   RANN                   2.6.1      2019-01-08 [2]
   rappdirs               0.3.3      2021-01-31 [2]
   RColorBrewer         * 1.1-2      2014-12-07 [2]
   Rcpp                   1.0.7      2021-07-07 [1]
   RcppAnnoy              0.0.19     2021-07-30 [1]
   RCurl                  1.98-1.3   2021-03-16 [1]
   registry               0.5-1      2019-03-05 [1]
   remotes                2.4.0      2021-06-02 [1]
   reshape2               1.4.4      2020-04-09 [2]
   reticulate           * 1.20       2021-05-03 [2]
   rjson                  0.2.20     2018-06-08 [1]
   rlang                  0.4.11     2021-04-30 [2]
   rmarkdown              2.10       2021-08-06 [1]
   ROCR                   1.0-11     2020-05-02 [2]
   rpart                  4.1-15     2019-04-12 [2]
   rprojroot              2.0.2      2020-11-15 [2]
   Rsamtools              2.6.0      2020-10-27 [1]
   RSQLite                2.2.7      2021-04-22 [1]
   rsvd                   1.0.5      2021-04-16 [1]
   rtracklayer            1.50.0     2020-10-27 [1]
   Rtsne                  0.15       2018-11-10 [2]
   S4Vectors            * 0.28.1     2020-12-09 [1]
   sass                   0.4.0      2021-05-12 [2]
   scales               * 1.1.1      2020-05-11 [2]
   scater                 1.18.6     2021-02-26 [1]
   scattermore            0.7        2020-11-24 [2]
   sctransform            0.3.2      2020-12-16 [2]
   scuttle                1.0.4      2020-12-17 [1]
   seriation            * 1.2-9      2020-10-01 [1]
   sessioninfo            1.1.1      2018-11-05 [1]
   Seurat               * 4.0.1      2021-03-18 [2]
   SeuratObject         * 4.0.1      2021-05-08 [2]
   shape                  1.4.6      2021-05-19 [1]
   shiny                  1.6.0      2021-01-25 [2]
   SingleCellExperiment * 1.12.0     2020-10-27 [1]
   snakecase              0.11.0     2019-05-25 [1]
   sparseMatrixStats      1.2.1      2021-02-02 [1]
   spatstat.core          2.1-2      2021-04-18 [2]
   spatstat.data          2.1-0      2021-03-21 [2]
   spatstat.geom          2.1-0      2021-04-15 [2]
   spatstat.sparse        2.0-0      2021-03-16 [2]
   spatstat.utils         2.2-0      2021-06-14 [2]
   stringi                1.7.3      2021-07-16 [1]
   stringr              * 1.4.0      2019-02-10 [2]
   SummarizedExperiment * 1.20.0     2020-10-27 [1]
   survival               3.2-11     2021-04-26 [2]
   tensor                 1.5        2012-05-05 [2]
   testthat               3.0.3      2021-06-16 [2]
   tibble                 3.1.3      2021-07-23 [1]
   tidyr                  1.1.3      2021-03-03 [2]
   tidyselect             1.1.1      2021-04-30 [2]
   TMB                    1.7.20     2021-04-08 [1]
   TSP                    1.1-10     2020-04-17 [1]
   usethis                2.0.1      2021-02-10 [1]
   utf8                   1.2.2      2021-07-24 [1]
   uwot                   0.1.10     2020-12-15 [2]
   variancePartition      1.20.0     2020-10-27 [1]
   vctrs                  0.3.8      2021-04-29 [2]
   vipor                  0.4.5      2017-03-22 [1]
   viridis              * 0.6.1      2021-05-11 [1]
   viridisLite          * 0.4.0      2021-04-13 [1]
   whisker                0.4        2019-08-28 [1]
   withr                  2.4.2      2021-04-18 [2]
   workflowr            * 1.6.2      2020-04-30 [1]
   writexl              * 1.4.0      2021-04-20 [1]
   xfun                   0.25       2021-08-06 [1]
   XML                    3.99-0.6   2021-03-16 [1]
   xtable                 1.8-4      2019-04-21 [2]
   XVector                0.30.0     2020-10-27 [1]
   yaml                   2.2.1      2020-02-01 [2]
   zlibbioc               1.36.0     2020-10-27 [1]
   zoo                    1.8-9      2021-03-09 [2]
 source                            
 CRAN (R 4.0.0)                    
 Bioconductor                      
 Bioconductor                      
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 Bioconductor                      
 Bioconductor                      
 CRAN (R 4.0.3)                    
 Bioconductor                      
 Bioconductor                      
 Bioconductor                      
 Bioconductor                      
 Bioconductor                      
 CRAN (R 4.0.2)                    
 CRAN (R 4.0.2)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.1)                    
 CRAN (R 4.0.2)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Github (jalvesaq/colorout@79931fd)
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.2)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 Bioconductor                      
 CRAN (R 4.0.3)                    
 Bioconductor                      
 Bioconductor                      
 Bioconductor                      
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.5)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.2)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 <NA>                              
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 Github (HelenaLC/muscat@c939663)  
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.2)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.2)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.0)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.1)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.1)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.3)                    
 CRAN (R 4.0.0)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    
 Bioconductor                      
 CRAN (R 4.0.3)                    

[1] /pstore/home/macnairw/lib/conda_r3.12
[2] /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/R/library

 R -- Package was removed from disk.

sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/libopenblasp-r0.3.12.so

locale:
 [1] LC_CTYPE=C                 LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] writexl_1.4.0               reticulate_1.20            
 [3] fgsea_1.16.0                BiocParallel_1.24.1        
 [5] ggplot.multistats_1.0.0     seriation_1.2-9            
 [7] ComplexHeatmap_2.6.2        SeuratObject_4.0.1         
 [9] Seurat_4.0.1                future_1.21.0              
[11] Matrix_1.3-4                SingleCellExperiment_1.12.0
[13] SummarizedExperiment_1.20.0 Biobase_2.50.0             
[15] GenomicRanges_1.42.0        GenomeInfoDb_1.26.7        
[17] IRanges_2.24.1              S4Vectors_0.28.1           
[19] BiocGenerics_0.36.1         MatrixGenerics_1.2.1       
[21] matrixStats_0.60.0          purrr_0.3.4                
[23] forcats_0.5.1               ggplot2_3.3.5              
[25] scales_1.1.1                viridis_0.6.1              
[27] viridisLite_0.4.0           assertthat_0.2.1           
[29] stringr_1.4.0               data.table_1.14.0          
[31] magrittr_2.0.1              circlize_0.4.13            
[33] RColorBrewer_1.1-2          BiocStyle_2.18.1           
[35] colorout_1.2-2              workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] rappdirs_0.3.3            rtracklayer_1.50.0       
  [3] scattermore_0.7           R.methodsS3_1.8.1        
  [5] tidyr_1.1.3               bit64_4.0.5              
  [7] knitr_1.33                irlba_2.3.3              
  [9] DelayedArray_0.16.3       R.utils_2.10.1           
 [11] rpart_4.1-15              doParallel_1.0.16        
 [13] RCurl_1.98-1.3            generics_0.1.0           
 [15] callr_3.7.0               cowplot_1.1.1            
 [17] usethis_2.0.1             RSQLite_2.2.7            
 [19] RANN_2.6.1                bit_4.0.4                
 [21] spatstat.data_2.1-0       lubridate_1.7.10         
 [23] httpuv_1.6.1              xfun_0.25                
 [25] hms_1.1.0                 jquerylib_0.1.4          
 [27] evaluate_0.14             promises_1.2.0.1         
 [29] TSP_1.1-10                fansi_0.5.0              
 [31] progress_1.2.2            caTools_1.18.2           
 [33] igraph_1.2.6              DBI_1.1.1                
 [35] geneplotter_1.68.0        htmlwidgets_1.5.3        
 [37] spatstat.geom_2.1-0       ellipsis_0.3.2           
 [39] backports_1.2.1           dplyr_1.0.7              
 [41] annotate_1.68.0           deldir_0.2-10            
 [43] sparseMatrixStats_1.2.1   vctrs_0.3.8              
 [45] remotes_2.4.0             Cairo_1.5-12.2           
 [47] ROCR_1.0-11               abind_1.4-5              
 [49] cachem_1.0.5              withr_2.4.2              
 [51] sctransform_0.3.2         GenomicAlignments_1.26.0 
 [53] prettyunits_1.1.1         goftest_1.2-2            
 [55] cluster_2.1.2             lazyeval_0.2.2           
 [57] crayon_1.4.1              genefilter_1.72.1        
 [59] labeling_0.4.2            edgeR_3.32.1             
 [61] pkgconfig_2.0.3           pkgload_1.2.1            
 [63] vipor_0.4.5               nlme_3.1-152             
 [65] devtools_2.4.2            blme_1.0-5               
 [67] rlang_0.4.11              globals_0.14.0           
 [69] lifecycle_1.0.0           miniUI_0.1.1.1           
 [71] registry_0.5-1            rsvd_1.0.5               
 [73] rprojroot_2.0.2           polyclip_1.10-0          
 [75] lmtest_0.9-38             boot_1.3-28              
 [77] zoo_1.8-9                 beeswarm_0.4.0           
 [79] processx_3.5.2            whisker_0.4              
 [81] ggridges_0.5.3            GlobalOptions_0.1.2      
 [83] png_0.1-7                 rjson_0.2.20             
 [85] bitops_1.0-7              R.oo_1.24.0              
 [87] KernSmooth_2.23-20        Biostrings_2.58.0        
 [89] blob_1.2.1                DelayedMatrixStats_1.12.3
 [91] shape_1.4.6               parallelly_1.26.0        
 [93] beachmat_2.6.4            memoise_2.0.0            
 [95] plyr_1.8.6                hexbin_1.28.2            
 [97] ica_1.0-2                 gplots_3.1.1             
 [99] zlibbioc_1.36.0           compiler_4.0.5           
[101] clue_0.3-59               lme4_1.1-27.1            
[103] DESeq2_1.30.1             fitdistrplus_1.1-5       
[105] cli_3.0.1                 Rsamtools_2.6.0          
[107] snakecase_0.11.0          XVector_0.30.0           
[109] lmerTest_3.1-3            listenv_0.8.0            
[111] ps_1.6.0                  patchwork_1.1.1          
[113] pbapply_1.4-3             TMB_1.7.20               
[115] MASS_7.3-54               mgcv_1.8-36              
[117] tidyselect_1.1.1          stringi_1.7.3            
[119] highr_0.9                 yaml_2.2.1               
[121] BiocSingular_1.6.0        locfit_1.5-9.4           
[123] ggrepel_0.9.1             muscat_1.5.1             
[125] sass_0.4.0                fastmatch_1.1-0          
[127] tools_4.0.5               future.apply_1.7.0       
[129] foreach_1.5.1             git2r_0.28.0             
[131] janitor_2.1.0             gridExtra_2.3            
[133] farver_2.1.0              Rtsne_0.15               
[135] digest_0.6.27             BiocManager_1.30.16      
[137] shiny_1.6.0               Rcpp_1.0.7               
[139] broom_0.7.7               scuttle_1.0.4            
[141] later_1.2.0               RcppAnnoy_0.0.19         
[143] httr_1.4.2                AnnotationDbi_1.52.0     
[145] colorspace_2.0-2          XML_3.99-0.6             
[147] fs_1.5.0                  tensor_1.5               
[149] splines_4.0.5             uwot_0.1.10              
[151] spatstat.utils_2.2-0      scater_1.18.6            
[153] sessioninfo_1.1.1         plotly_4.9.3             
[155] xtable_1.8-4              jsonlite_1.7.2           
[157] nloptr_1.2.2.2            testthat_3.0.3           
[159] R6_2.5.0                  pillar_1.6.2             
[161] htmltools_0.5.1.1         mime_0.11                
[163] glue_1.4.2                fastmap_1.1.0            
[165] minqa_1.2.4               BiocNeighbors_1.8.2      
[167] codetools_0.2-18          pkgbuild_1.2.0           
[169] utf8_1.2.2                lattice_0.20-44          
[171] bslib_0.2.5.1             spatstat.sparse_2.0-0    
[173] tibble_3.1.3              pbkrtest_0.5.1           
[175] numDeriv_2016.8-1.1       ggbeeswarm_0.6.0         
[177] colorRamps_2.3            leiden_0.3.8             
[179] gtools_3.9.2              survival_3.2-11          
[181] limma_3.46.0              glmmTMB_1.0.2.1          
[183] rmarkdown_2.10            desc_1.3.0               
[185] munsell_0.5.0             GetoptLong_1.0.5         
[187] GenomeInfoDbData_1.2.4    iterators_1.0.13         
[189] variancePartition_1.20.0  reshape2_1.4.4           
[191] gtable_0.3.0              spatstat.core_2.1-2