Last updated: 2021-04-29
Checks: 5 2
Knit directory: MS_lesions/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish
or wflow_build
to ensure that the code is always run in an empty environment.
The following objects were defined in the global environment when these results were created:
Name | Class | Size |
---|---|---|
q | function | 1008 bytes |
The command set.seed(20210118)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
To ensure reproducibility of the results, delete the cache directory ms05_splitting_cache
and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE
when running wflow_build()
or wflow_publish()
.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a6bdc98. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rprofile
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: ._MS_lesions.sublime-project
Ignored: MS_lesions.sublime-project
Ignored: MS_lesions.sublime-workspace
Ignored: analysis/.__site.yml
Ignored: analysis/ms02_doublet_id_cache/
Ignored: analysis/ms03_SampleQC_cache/
Ignored: analysis/ms04_conos_cache/
Ignored: analysis/ms05_splitting_cache/
Ignored: analysis/ms07_soup_cache/
Ignored: analysis/ms08_modules_cache/
Ignored: analysis/ms10_muscat_run01_cache/
Ignored: analysis/ms10_muscat_run02_cache/
Ignored: analysis/ms10_muscat_template_cache/
Ignored: analysis/supp10_muscat_cache/
Ignored: data/
Ignored: output/
Untracked files:
Untracked: analysis/ms10_muscat_run01.Rmd
Untracked: analysis/ms10_muscat_run02.Rmd
Untracked: analysis/ms10_muscat_template.Rmd
Untracked: code/ms10_muscat_fns.R
Untracked: code/ms10_muscat_runs.R
Untracked: code/muscat_plan.txt
Untracked: code/plot_dotplot.R
Untracked: code/supp10_muscat.R
Unstaged changes:
Modified: analysis/index.Rmd
Modified: analysis/ms03_SampleQC.Rmd
Modified: analysis/ms07_soup.Rmd
Modified: analysis/ms08_modules.Rmd
Modified: analysis/supp10_muscat.Rmd
Modified: code/ms00_utils.R
Modified: code/ms03_SampleQC.R
Modified: code/ms07_soup.R
Deleted: code/ms10_muscat.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ms05_splitting.Rmd
) and HTML (docs/ms05_splitting.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | a6221cc | wmacnair | 2021-04-07 | Giant update of recent work |
Rmd | b7ecf3b | wmacnair | 2021-02-15 | Finalized cluster splitting and merging, did modules |
Rmd | 956fb60 | wmacnair | 2021-02-10 | Running and checking subcluster splitting |
source('code/ms00_utils.R')
source('code/ms04_conos.R')
source('code/ms05_splitting.R')
sce_f = 'data/sce_raw/ms_sce.rds'
conos_dir = 'output/ms04_conos'
conos_f = file.path(conos_dir, 'conos_annot_2021-02-11.txt')
# umap_f = file.path(conos_dir, 'conos_umap_2021-02-11.txt')
viz_f = file.path(conos_dir, 'conos_viz_2021-02-11.txt')
graph_f = file.path(conos_dir, 'conos_graph_2021-02-11.txt.gz')
qc_dir = 'output/ms03_SampleQC'
qc_f = file.path(qc_dir, 'ms_qc_dt.txt')
# define save directory
save_dir = 'output/ms05_splitting'
date_tag = '2021-02-12'
if (!dir.exists(save_dir))
dir.create(save_dir)
# which clusters to split?
to_check = c('cns24', 'cns28', 'cns55')
res_list = c(0.5, 1, 2)
n_pcs = 20
check_spec = list(
cns24 = list(conos = 'cns24', sel_res = 0.5),
cns28 = list(conos = 'cns28', sel_res = 0.5)
,cns55 = list(conos = 'cns55', sel_res = 1)
)
check_ns = names(check_spec)
# where to save them?
subg_pat = sprintf('%s/subgraph_%s_%s.rds', save_dir, date_tag, '%s')
split_pat = sprintf('%s/splits_%s_%s.txt', save_dir, date_tag, '%s')
# saving find markers outputs
fm_pat = file.path(save_dir, "fm_%s_%s.txt")
n_cells = 500
tests = c('binom', 'wilcox', 't')
# marker expression
top_n = 10
fm_f = sprintf('%s/conos_split_markers_%s.txt', save_dir, date_tag)
immune_f = sprintf('%s/immune_markers_%s.txt', save_dir, date_tag)
prior_f = sprintf('%s/prior_markers_%s.txt', save_dir, date_tag)
# output
split_f = sprintf('%s/conos_split_%s.txt', save_dir, date_tag)
conos_dt = fread(conos_f) %>%
.[, type_broad := factor(type_broad, levels = broad_ord)] %>%
merge(fread(viz_f), by = 'cell_id') %>%
setnames(c('viz1', 'viz2'), c('umap1', 'umap2'))
extract_subgraphs(graph_f, conos_dt, subg_pat, check_spec)
already done !
NULL
for (cl in check_ns)
split_subgraph(split_pat, subg_pat, cl, res_list = res_list)
already done for cns24!
already done for cns28!
already done for cns55!
subgraph_list = lapply(check_ns, function(n)
load_conos_subgraph(split_pat, n, conos_dt, check_spec[[n]]$sel_res)) %>%
setNames(check_ns)
calc_find_markers_split(sce_f, fm_pat, subgraph_list, tests, n_cells,
n_cores = 8)
already done!
skipping
NULL
fm_dt = load_find_markers_split(fm_pat, check_ns, tests)
Warning in `[.data.table`(dt, , `:=`(abs_fc, NULL)): Column 'abs_fc' does not
exist to remove
Warning in `[.data.table`(dt, , `:=`(abs_fc, NULL)): Column 'abs_fc' does not
exist to remove
immune_dt = load_immune_genes()
prior_dt = get_prior_dt()
# calculate top markers, set of cell_ids to use
top_fm_dt = calc_top_fm_dt(fm_dt, top_n = top_n)
top_genes = top_fm_dt$symbol %>% unique
# which cell_ids to use?
conos_sub = check_ns %>%
lapply(function(n) subgraph_list[[n]] %>%
.[, .(cell_id, conos_split = paste0(n, '.', str_extract(conos_sub, '[0-9]$')))]
) %>% rbindlist
gene_labs = top_fm_dt[, .SD[FDR == min(FDR), .(conos, conos_sub)], by = .(symbol, conos)] %>%
.[, .(symbol, conos, marker_split = paste0(conos, '.', str_extract(conos_sub, '[0-9]$')))]
# extract marker values
fm_exp_dt = calc_marker_exp_dt(top_genes, sce_f, fm_f, qc_f, conos_sub,
cell_ids = conos_sub$cell_id, cluster_var = 'conos_split') %>%
.[, conos := str_extract(conos_split, 'cns[0-9]{2}')] %>%
merge(gene_labs, by = c('conos', 'symbol'))
already done! loading
# extract marker values
immune_exp_dt = calc_marker_exp_dt(immune_dt$symbol, sce_f, immune_f, qc_f, conos_sub,
cell_ids = conos_sub$cell_id, cluster_var = 'conos_split') %>%
.[, conos := str_extract(conos_split, 'cns[0-9]{2}')] %>%
merge(immune_dt, by = 'symbol')
already done! loading
# extract counts, means
prior_exp_dt = calc_marker_exp_dt(prior_dt$symbol, sce_f, prior_f, qc_f, conos_sub,
cell_ids = conos_sub$cell_id, cluster_var = 'conos_split') %>%
.[, conos := str_extract(conos_split, 'cns[0-9]{2}')] %>%
merge(prior_dt, by = 'symbol')
already done! loading
conos_split_dt = assemble_conos_split(conos_dt, conos_sub)
conos
on subgraphsfor (cl in to_check) {
cat('### ', cl, '\n')
print(plot_subgraph(subgraph_list, cl))
cat('\n\n')
}
for (cl in to_check) {
cat('### ', cl, '\n')
draw(split_marker_heatmap_fn(prior_exp_dt[conos == cl],
annot_var = 'marker_type'))
cat('\n\n')
}
for (cl in to_check) {
cat('### ', cl, '\n')
draw(split_marker_heatmap_fn(immune_exp_dt[conos == cl],
annot_var = 'celltype'))
cat('\n\n')
}
for (cl in to_check) {
cat('### ', cl, '\n')
draw(split_marker_heatmap_fn(fm_exp_dt[conos == cl],
annot_var = 'marker_split'))
cat('\n\n')
}
fwrite(conos_split_dt, file = split_f)
devtools::session_info()
Registered S3 method overwritten by 'cli':
method from
print.boxx spatstat.geom
- Session info ---------------------------------------------------------------
setting value
version R version 4.0.3 (2020-10-10)
os CentOS Linux 7 (Core)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype C
tz Europe/Zurich
date 2021-04-29
- Packages -------------------------------------------------------------------
package * version date lib
abind 1.4-5 2016-07-21 [2]
assertthat * 0.2.1 2019-03-21 [2]
beachmat 2.6.4 2020-12-20 [1]
beeswarm 0.3.1 2021-03-07 [1]
Biobase * 2.50.0 2020-10-27 [1]
BiocGenerics * 0.36.1 2021-04-16 [1]
BiocManager 1.30.12 2021-03-28 [1]
BiocNeighbors 1.8.2 2020-12-07 [1]
BiocParallel * 1.24.1 2020-11-06 [1]
BiocSingular 1.6.0 2020-10-27 [1]
BiocStyle * 2.18.1 2020-11-24 [1]
bitops 1.0-6 2013-08-17 [2]
bluster 1.0.0 2020-10-27 [1]
bslib 0.2.4 2021-01-25 [2]
cachem 1.0.4 2021-02-13 [2]
Cairo 1.5-12.2 2020-07-07 [2]
callr 3.6.0 2021-03-28 [2]
circlize * 0.4.12 2021-01-08 [1]
cli 2.4.0 2021-04-05 [2]
clue 0.3-59 2021-04-16 [1]
cluster 2.1.2 2021-04-17 [2]
codetools 0.2-18 2020-11-04 [2]
colorout * 1.2-2 2021-04-15 [1]
colorspace 2.0-0 2020-11-11 [2]
ComplexHeatmap * 2.6.2 2020-11-12 [1]
conos * 1.4.0 2021-02-23 [1]
cowplot 1.1.1 2020-12-30 [2]
crayon 1.4.1 2021-02-08 [2]
data.table * 1.14.0 2021-02-21 [2]
DBI 1.1.1 2021-01-15 [2]
DelayedArray 0.16.3 2021-03-24 [1]
DelayedMatrixStats 1.12.3 2021-02-03 [1]
deldir 0.2-10 2021-02-16 [2]
desc 1.3.0 2021-03-05 [2]
devtools 2.4.0 2021-04-07 [1]
digest 0.6.27 2020-10-24 [2]
dplyr 1.0.5 2021-03-05 [2]
dqrng 0.2.1 2019-05-17 [2]
edgeR 3.32.1 2021-01-14 [1]
ellipsis 0.3.1 2020-05-15 [2]
evaluate 0.14 2019-05-28 [2]
fansi 0.4.2 2021-01-15 [2]
farver 2.1.0 2021-02-28 [2]
fastmap 1.1.0 2021-01-25 [2]
fitdistrplus 1.1-3 2020-12-05 [2]
forcats * 0.5.1 2021-01-27 [2]
foreach 1.5.1 2020-10-15 [2]
fs 1.5.0 2020-07-31 [2]
future 1.21.0 2020-12-10 [2]
future.apply 1.7.0 2021-01-04 [2]
generics 0.1.0 2020-10-31 [2]
GenomeInfoDb * 1.26.7 2021-04-08 [1]
GenomeInfoDbData 1.2.4 2021-04-15 [1]
GenomicRanges * 1.42.0 2020-10-27 [1]
GetoptLong 1.0.5 2020-12-15 [1]
ggbeeswarm 0.6.0 2017-08-07 [1]
ggplot.multistats * 1.0.0 2019-10-28 [1]
ggplot2 * 3.3.3 2020-12-30 [2]
ggrepel 0.9.1 2021-01-15 [2]
ggridges 0.5.3 2021-01-08 [2]
git2r 0.28.0 2021-01-10 [1]
GlobalOptions 0.1.2 2020-06-10 [1]
globals 0.14.0 2020-11-22 [2]
glue 1.4.2 2020-08-27 [2]
goftest 1.2-2 2019-12-02 [2]
gridExtra 2.3 2017-09-09 [2]
grr 0.9.5 2016-08-26 [1]
gtable 0.3.0 2019-03-25 [2]
hexbin 1.28.2 2021-01-08 [2]
highr 0.9 2021-04-16 [2]
htmltools 0.5.1.1 2021-01-22 [2]
htmlwidgets 1.5.3 2020-12-10 [2]
httpuv 1.5.5 2021-01-13 [2]
httr 1.4.2 2020-07-20 [2]
ica 1.0-2 2018-05-24 [2]
igraph * 1.2.6 2020-10-06 [2]
IRanges * 2.24.1 2020-12-12 [1]
irlba 2.3.3 2019-02-05 [2]
iterators 1.0.13 2020-10-15 [2]
jquerylib 0.1.3 2020-12-17 [2]
jsonlite 1.7.2 2020-12-09 [2]
KernSmooth 2.23-18 2020-10-29 [2]
knitr 1.32 2021-04-14 [1]
labeling 0.4.2 2020-10-20 [2]
later 1.1.0.1 2020-06-05 [2]
lattice 0.20-41 2020-04-02 [2]
lazyeval 0.2.2 2019-03-15 [2]
leiden 0.3.7 2021-01-26 [2]
leidenAlg 0.1.1 2021-03-03 [1]
lifecycle 1.0.0 2021-02-15 [2]
limma 3.46.0 2020-10-27 [1]
listenv 0.8.0 2019-12-05 [2]
lmtest 0.9-38 2020-09-09 [2]
locfit 1.5-9.4 2020-03-25 [1]
magrittr * 2.0.1 2020-11-17 [1]
MASS 7.3-53.1 2021-02-12 [2]
Matrix * 1.3-2 2021-01-06 [2]
Matrix.utils 0.9.8 2020-02-26 [1]
MatrixGenerics * 1.2.1 2021-01-30 [1]
matrixStats * 0.58.0 2021-01-29 [2]
memoise 2.0.0 2021-01-26 [1]
mgcv 1.8-35 2021-04-18 [2]
mime 0.10 2021-02-13 [2]
miniUI 0.1.1.1 2018-05-18 [2]
munsell 0.5.0 2018-06-12 [2]
nlme 3.1-152 2021-02-04 [2]
parallelly 1.24.0 2021-03-14 [2]
patchwork * 1.1.1 2020-12-17 [2]
pbapply 1.4-3 2020-08-18 [2]
pillar 1.6.0 2021-04-13 [2]
pkgbuild 1.2.0 2020-12-15 [1]
pkgconfig 2.0.3 2019-09-22 [2]
pkgload 1.2.1 2021-04-06 [2]
plotly 4.9.3 2021-01-10 [2]
plyr 1.8.6 2020-03-03 [2]
png 0.1-7 2013-12-03 [2]
polyclip 1.10-0 2019-03-14 [2]
prettyunits 1.1.1 2020-01-24 [2]
processx 3.5.1 2021-04-04 [2]
promises 1.2.0.1 2021-02-11 [2]
ps 1.6.0 2021-02-28 [2]
purrr 0.3.4 2020-04-17 [2]
R6 2.5.0 2020-10-28 [2]
RANN 2.6.1 2019-01-08 [2]
RColorBrewer * 1.1-2 2014-12-07 [2]
Rcpp 1.0.6 2021-01-15 [2]
RcppAnnoy 0.0.18 2020-12-15 [2]
RCurl 1.98-1.3 2021-03-16 [1]
registry 0.5-1 2019-03-05 [1]
remotes 2.3.0 2021-04-01 [1]
reshape2 1.4.4 2020-04-09 [2]
reticulate 1.18 2020-10-25 [2]
rjson 0.2.20 2018-06-08 [1]
rlang 0.4.10 2020-12-30 [2]
rmarkdown 2.7 2021-02-19 [2]
ROCR 1.0-11 2020-05-02 [2]
rpart 4.1-15 2019-04-12 [2]
rprojroot 2.0.2 2020-11-15 [2]
rsvd 1.0.5 2021-04-16 [1]
Rtsne 0.15 2018-11-10 [2]
S4Vectors * 0.28.1 2020-12-09 [1]
sass 0.3.1 2021-01-24 [2]
scales * 1.1.1 2020-05-11 [2]
scater * 1.18.6 2021-02-26 [1]
scattermore 0.7 2020-11-24 [2]
sccore 0.1.2 2021-02-23 [1]
scran * 1.18.7 2021-04-16 [1]
sctransform 0.3.2 2020-12-16 [2]
scuttle 1.0.4 2020-12-17 [1]
seriation * 1.2-9 2020-10-01 [1]
sessioninfo 1.1.1 2018-11-05 [1]
Seurat * 4.0.1 2021-03-18 [2]
SeuratObject * 4.0.0 2021-01-15 [2]
shape 1.4.5 2020-09-13 [2]
shiny 1.6.0 2021-01-25 [2]
SingleCellExperiment * 1.12.0 2020-10-27 [1]
sparseMatrixStats 1.2.1 2021-02-02 [1]
spatstat.core 2.1-2 2021-04-18 [2]
spatstat.data 2.1-0 2021-03-21 [2]
spatstat.geom 2.1-0 2021-04-15 [2]
spatstat.sparse 2.0-0 2021-03-16 [2]
spatstat.utils 2.1-0 2021-03-15 [2]
statmod 1.4.35 2020-10-19 [1]
stringi 1.5.3 2020-09-09 [2]
stringr * 1.4.0 2019-02-10 [2]
SummarizedExperiment * 1.20.0 2020-10-27 [1]
survival 3.2-10 2021-03-16 [2]
tensor 1.5 2012-05-05 [2]
testthat 3.0.2 2021-02-14 [2]
tibble 3.1.1 2021-04-18 [2]
tidyr 1.1.3 2021-03-03 [2]
tidyselect 1.1.0 2020-05-11 [2]
TSP 1.1-10 2020-04-17 [1]
usethis 2.0.1 2021-02-10 [1]
utf8 1.2.1 2021-03-12 [2]
uwot * 0.1.10 2020-12-15 [2]
vctrs 0.3.7 2021-03-29 [2]
vipor 0.4.5 2017-03-22 [1]
viridis * 0.6.0 2021-04-15 [1]
viridisLite * 0.4.0 2021-04-13 [2]
whisker 0.4 2019-08-28 [1]
withr 2.4.2 2021-04-18 [2]
workflowr * 1.6.2 2020-04-30 [1]
xfun 0.22 2021-03-11 [1]
xtable 1.8-4 2019-04-21 [2]
XVector 0.30.0 2020-10-27 [1]
yaml 2.2.1 2020-02-01 [2]
zlibbioc 1.36.0 2020-10-27 [1]
zoo 1.8-9 2021-03-09 [2]
source
CRAN (R 4.0.0)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
Bioconductor
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Github (jalvesaq/colorout@79931fd)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.2)
CRAN (R 4.0.3)
Bioconductor
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.3)
CRAN (R 4.0.0)
Bioconductor
CRAN (R 4.0.3)
Bioconductor
CRAN (R 4.0.3)
[1] /pstore/home/macnairw/lib/conda_r3.12
[2] /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/R/library
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /pstore/home/macnairw/.conda/envs/r_4.0.3/lib/libopenblasp-r0.3.12.so
locale:
[1] LC_CTYPE=C LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 grid stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] scran_1.18.7 uwot_0.1.10
[3] scater_1.18.6 SingleCellExperiment_1.12.0
[5] SummarizedExperiment_1.20.0 Biobase_2.50.0
[7] GenomicRanges_1.42.0 GenomeInfoDb_1.26.7
[9] IRanges_2.24.1 S4Vectors_0.28.1
[11] BiocGenerics_0.36.1 MatrixGenerics_1.2.1
[13] matrixStats_0.58.0 BiocParallel_1.24.1
[15] ggplot.multistats_1.0.0 patchwork_1.1.1
[17] seriation_1.2-9 ComplexHeatmap_2.6.2
[19] SeuratObject_4.0.0 Seurat_4.0.1
[21] conos_1.4.0 igraph_1.2.6
[23] Matrix_1.3-2 forcats_0.5.1
[25] ggplot2_3.3.3 scales_1.1.1
[27] viridis_0.6.0 viridisLite_0.4.0
[29] assertthat_0.2.1 stringr_1.4.0
[31] data.table_1.14.0 magrittr_2.0.1
[33] circlize_0.4.12 RColorBrewer_1.1-2
[35] BiocStyle_2.18.1 colorout_1.2-2
[37] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] utf8_1.2.1 reticulate_1.18
[3] tidyselect_1.1.0 htmlwidgets_1.5.3
[5] TSP_1.1-10 Rtsne_0.15
[7] devtools_2.4.0 munsell_0.5.0
[9] codetools_0.2-18 ica_1.0-2
[11] statmod_1.4.35 future_1.21.0
[13] miniUI_0.1.1.1 withr_2.4.2
[15] colorspace_2.0-0 highr_0.9
[17] knitr_1.32 rstudioapi_0.13
[19] ROCR_1.0-11 tensor_1.5
[21] listenv_0.8.0 labeling_0.4.2
[23] git2r_0.28.0 GenomeInfoDbData_1.2.4
[25] polyclip_1.10-0 farver_2.1.0
[27] rprojroot_2.0.2 parallelly_1.24.0
[29] Matrix.utils_0.9.8 vctrs_0.3.7
[31] generics_0.1.0 xfun_0.22
[33] R6_2.5.0 ggbeeswarm_0.6.0
[35] clue_0.3-59 rsvd_1.0.5
[37] locfit_1.5-9.4 cachem_1.0.4
[39] bitops_1.0-6 spatstat.utils_2.1-0
[41] DelayedArray_0.16.3 promises_1.2.0.1
[43] beeswarm_0.3.1 gtable_0.3.0
[45] beachmat_2.6.4 Cairo_1.5-12.2
[47] globals_0.14.0 processx_3.5.1
[49] goftest_1.2-2 rlang_0.4.10
[51] GlobalOptions_0.1.2 splines_4.0.3
[53] lazyeval_0.2.2 hexbin_1.28.2
[55] spatstat.geom_2.1-0 BiocManager_1.30.12
[57] yaml_2.2.1 reshape2_1.4.4
[59] abind_1.4-5 httpuv_1.5.5
[61] usethis_2.0.1 tools_4.0.3
[63] sccore_0.1.2 ellipsis_0.3.1
[65] spatstat.core_2.1-2 jquerylib_0.1.3
[67] sessioninfo_1.1.1 ggridges_0.5.3
[69] Rcpp_1.0.6 plyr_1.8.6
[71] sparseMatrixStats_1.2.1 zlibbioc_1.36.0
[73] purrr_0.3.4 RCurl_1.98-1.3
[75] prettyunits_1.1.1 ps_1.6.0
[77] rpart_4.1-15 deldir_0.2-10
[79] pbapply_1.4-3 GetoptLong_1.0.5
[81] cowplot_1.1.1 zoo_1.8-9
[83] grr_0.9.5 ggrepel_0.9.1
[85] cluster_2.1.2 fs_1.5.0
[87] scattermore_0.7 lmtest_0.9-38
[89] RANN_2.6.1 whisker_0.4
[91] fitdistrplus_1.1-3 pkgload_1.2.1
[93] mime_0.10 evaluate_0.14
[95] xtable_1.8-4 gridExtra_2.3
[97] shape_1.4.5 testthat_3.0.2
[99] compiler_4.0.3 tibble_3.1.1
[101] KernSmooth_2.23-18 crayon_1.4.1
[103] htmltools_0.5.1.1 mgcv_1.8-35
[105] later_1.1.0.1 tidyr_1.1.3
[107] DBI_1.1.1 MASS_7.3-53.1
[109] cli_2.4.0 pkgconfig_2.0.3
[111] registry_0.5-1 plotly_4.9.3
[113] scuttle_1.0.4 spatstat.sparse_2.0-0
[115] foreach_1.5.1 vipor_0.4.5
[117] bslib_0.2.4 dqrng_0.2.1
[119] XVector_0.30.0 leidenAlg_0.1.1
[121] callr_3.6.0 digest_0.6.27
[123] sctransform_0.3.2 RcppAnnoy_0.0.18
[125] spatstat.data_2.1-0 rmarkdown_2.7
[127] leiden_0.3.7 edgeR_3.32.1
[129] DelayedMatrixStats_1.12.3 shiny_1.6.0
[131] rjson_0.2.20 lifecycle_1.0.0
[133] nlme_3.1-152 jsonlite_1.7.2
[135] BiocNeighbors_1.8.2 desc_1.3.0
[137] limma_3.46.0 fansi_0.4.2
[139] pillar_1.6.0 lattice_0.20-41
[141] pkgbuild_1.2.0 fastmap_1.1.0
[143] httr_1.4.2 survival_3.2-10
[145] remotes_2.3.0 glue_1.4.2
[147] png_0.1-7 iterators_1.0.13
[149] bluster_1.0.0 stringi_1.5.3
[151] sass_0.3.1 BiocSingular_1.6.0
[153] memoise_2.0.0 dplyr_1.0.5
[155] irlba_2.3.3 future.apply_1.7.0